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Design Driven Testing on Adaptive Use Case Approach
for Real Time System
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Abstract

This paper is intfroduced about Design driven testing, for redl fime system, based on use case approaches. We focuses on a
part of an extended use case approach for red time software development, which partitions design schema info layered design
component architecture of functional companents called " design compenent’.  We developed a use case action matrix fo
contain a collection of related scenarios each describing a specific variant of an executable sequence of use case action units,
which reflected the behavioral properties of the real time system design. In this paper, we aftempt to apply red time system with
design driven testing with fest plon mefrics which is infroduced which produces an ordering of this scenario set fo enhance

productivity and both promote and capitalize on fest case reusability of existing scenarios.

e Keyword  Test Matrix, Design Driven Testing, Adaptive Use Cose, ReaHime Object Oriented software Development

1. Introduction

This paper is introduced about Design driven test-
ing, for real time system, based on use case ap-
proaches[3,5,6]. In this time, we are not interested
in automatically generating test data, but providing a
framework for test review design in the certain test
criteria. Therefore, we focus on the design phase of
real time software development activities. Compared
to the traditional software development engineering,
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we deal with testing the design for preventing a little
problem from propagating it later on, that is, reducing
the cost of testing at the design phase of real time
object oriented software development. First, we extend
use case interaction diagrams which are included with
Branch, Fork-Join, And-Or gate notation, and so on,
for real time system, concurrent system, and telecom-
munication. Second, hurlburt’s notion of an action unit
needs to be refined from/with a conceptual analysis
of the method sequences found in extended interaction
diagrams, which, by the way, is the first significant
artifact produced during use case design.

Our preliminary analysis of this issue has resulted
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in the introduction of the concept of a “design com-
ponent”. Several definitions for the design components
have emerged from our research for the designer or tester
to choose from depending on the level of abstraction
desired and the preference for testing techniques to be
applied. Even some definitions of this component design
unit guild to generate skeleton code through state transition
table, and help to generate test cases with an action matrix
which is converted from the interaction diagram.

Several possible definitions of design units are
introduced, each processing different testing charac-
teristics. The design driven testing with an action
matrix and test plan metrics[2] is defined for the
purpose of generating a preliminary test plan. The
paper is organized as follows: layered design com-
ponent architecture on extended interaction diagram
is described in Section 2. An action matrix pro-
duced from the interaction diagram is described in
Section 3. We mention test plan metrics, and test
plan generation with an application of real time UPS
system in Section 4 and 5 respectively. Conclusion
and summary are given in Section 6.

2. Layered Design Component
Architecture

This idea is based on real time object-oriented be-
havioral design which partitions design schema into
layered functional components called “design component”.

2.1 Definition of Desigh Components

One of the first artifacts produced during the design
component phase is the extended interaction diagram
based on usc casc methodology. The message sequence
defined by the sequential diagram can be partitioned
into a sequence of design component. As a result,
different testing techniques may be appropriate depending

on the choice of deign component. Based on the
layered architecture, we can also identify the reusable
design component through real time object-oriented
behavioral design of adaptive use case methodclogy
[12,13,14].

Method component: method executed by an cbject
in response to a message. Consider the simple se-
quential diagram described in Figure 1.

Reusable Pattern Component: Sequence of methods
executed by a particular object pattern.

llustrate a possible grouping of methods based on
(presumed) reusable pattern components. This simple
vending machine example contains just reusable patterns
figure 2.

The SISO pattern is preferred because it simplifies
the testing process. However, that may not always
be possible. What we don’t want it for there io be
a cross-product of inputfoutput, ie., all possible
combinations M*N in a MIMO pattern. If, however,
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Figure 1. Example of a Method Component

Vending machine:
© 1 OO | e

< m1: insert coin

a m2: check coin

[—m1 ] il m3: measure the weight of coin
H md: judge what coin
b mS: notify
p [ me: notify

i ome - reusable pattern unit:
¢ a=mi+ m2;
b=m3 +m4;
c=m5+mé;

Figure 2. Example of a Reusable Pattern
Component
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Figure 3. Characteristic interface of SISO,
MISO, SIMO, MIMO
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Figure 4. Example of State Components

each input & output are uniquely paired {1-1}, then
MIMO can be reduced to a set of SISO protocols as
follows: {1-1} {2-2} {3-3} in MIMO in Figure 3.
State Component: sequence of methods executed
during the interval bounded by consecutive states
as defined by the corresponding event state model.
The state boundary based testing will check the
precondition of a state pair (Si, Sj). As a result of
the condition (that is, PC [S1, S2|S3] PS1|PS2) it
will transfer to either S2 or S3 in Figure 5.
Maximal Linear Component (MLU): a sequence
of methods executed during the interval bound by
consecutive choices (both actor and object choices).
Consider of this example that an MLU is the same
as the dialogue component if no choice/branch nodes
exist except for the actor.
Figure 6. includes a choice node for the control
object. Thus, the MLU for this interaction diagram

., ey

Figure b. Changing the State on a Decision
Node
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Figure 6. Example of MLUs (Max Linear
Components)
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[Scenarios
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DUIL:(Im1,0ml)={a,b,c}

pu2 d
DU2:(Iml, Om2) = {a,b,d,¢ }

Figure 7. Example of Dialogue Components

is (a,b), (c), and (de).

Dialog Component: a sequence of methods executed
during the interval bounded by input from an actor
and the response to that actor.

In an interaction diagram with the choice notation
of Figure 7, sequences of messages/methods are
executed during the interval bounded by input from
an actor and the response to that actor. We can identify
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Figure 8. A Circuit of Real Time UPS

all possible paths from an actor through the system
to itself such as dialogue 1 (‘a b ¢’), dialogue 2 (‘a
b d e’), and so on.

3. What is Action Matrix?

From this point, we will show with one case study
of modeling a real time ’Uninterruptible Power System
(UPS)’ use case scenarios through the real circuit of
UPS in figure 8.

Focusing on the actor’s view, there are five high-
level use case scenarios such as the normal status,
the nomal return, the service interruption, the failure,
and the overhead as follows:

a) Normal status: rectifying part and charging part,
which receive normal or preliminary power source,
shall supply stable AC power by power inverter that
switches AC to DC, and shall also charge battery.

b) Service interruption: when normal power service
is interrupted, the battery, which has charged by
rectifying part and charging part in ordinary
time, discharges power to supply DC power to
power inverter so that the load can supply stable
AC power under no power service interruption
for specific discharge time.

c) Normal return; when interrupted normal power is
supplied to rectifying part and charging part again,
battery suspends its discharge automatically, and
good quality normal power is supplied to the load
without any service interruption through power in-
verter and at the same time discharged battery is
charged again.

d) Failure: power inverter automatically synchronizes
output frequency, voltage and normal power.

e) Overload: power inverter automatically synchronizes
output frequency, voltage and normal power.

From the requirement specification and the high-
level use case scenario analysis, we design the extended
interaction diagrams through passing several steps.
In this paper, we will skip several steps to develop
five use case interaction diagrams from high-level
use case scenarios. With these diagrams in Figure
9, 10 and 11, we can convert the action matrix and
use case map dialog through producing these diagrams
based on high-level use case scenarios at design
stage. Three of these diagrams are ‘normal status’,
‘service interruption’, and ‘out-of-order’ use cases in
Figure 9, 10, and 11 respectively.

The use case action matrix is intended to present
the scenario designed in a tabular form as the main
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Figure 9. Normal Status Interaction Diagram
Note: Or gate on Rectifier means binary branch concept.
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Figure 11. Out-of-Order Interaction Diagram
course of action as a collection of actions that shows the coverage of its use case action by all the
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R probability;
Scenar at|blctjdt (el f1|glilht[it} jl N Kit 1t jmilnijol}plliql|n of ocourrences

Main Path 1 2 i 314 B [o.5#1212101210101
(Normai status) 20 3 20,941 21412121 20,54

Yariant | 1 2 314 5 6 lo.gererererererar
(Normal returmmt} 20 3’ 0.9 ) # 1412121 20,27
variant 2 0.05416161£14 14121
(Service interrupt)) 1 2 3 4 5 B [0.05012141=0.0025
Varlant 3 0.0245143 412161214}
(Out-of- Order) 1 2 413 L) B f0.05¢12121=0.00:2
Variant 4 0,026%1¢ 141221272}
(Overload) 1 2 413 5 B [c0.05¢1¢141=0.0015

Figure 12 (a) Action Matrix for Real Time UPS Application
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Figure 12(b) Use Case Dialog Map for Real Time UPS Application

variant scenarios in Figure 12 (a). Hurlurt also men-
tions that an alternative representation of the matrix
is a use case dialog map in Figure 12 (b).

Misa’s operational profile is frequently weighted by
criticality that reflects both how the system is being
used and the relative importance of the uses. We
may either guess the probability of occurrence on
each branch of the specific node (action) or survey the
collection of data [3,9,10,12,13].

4. Design Driven Testing

Most Object-oriented software testing methods have
been developed for object oriented programs based
on white-box testing. None of the existing methods
of testing ‘design’ at the design stage can directly
be applied for real time object oriented development
methodologies. Our design driven testing approach em-
phasizes testing software behavioral design speci-
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fications in the design stage, which bring the metric
concepts to the software development in that the
motivation for metrics should focus on reusable numbers
& ordering of scenarios on testing.

4.1 Test Plan Metrics

This section focuses on the software testing metrics
used in the generation of object oriented test plans
as part of Carlson’s use case methodology [3]. The
test plan uses an action matrix that contains a collection
of executable sequences of use case action units
(called scenarios). The action matrix is generated from
the interaction diagram at the design stage. Software
testing metrics are employed to improve the productivity
of the testing process through scenario prioritization.

The purpose is to ‘optimize’ the order in which
the scenarios defined by the rows of the action
matrix are executed. This approach was adopted from
Musa’s work on Operational Profiles [9,10]. Musa’s
approach assumes that the designer has sufficient
insight to assess the ‘criticality’ of action units and
assign weighting factors to the elements of the
action matrix {7,8]. This approach differs in that the
designer analyzes the scenarios based on the ‘reusability’
of their components or subpaths.

Table 1 illustrates the test plan metrics such as
most critical scenarios, most reusable components,
and most reusable subpaths. The software test metrics
described in this section focus on the length, criticality
and reusability properties of the scenarios / action
units as summarized in Table 1.

First, the issue of Length is two aspects of
shortest path and longest path. I think it is not

choose an ordered list of test scenarios.

Third, the issue of Reusability is also important
to identify and maximize the reusable components.
Therefore, we use scenarios and action units to
develop a new path (ie., scenario) with the smallest
number of alterations from the existing paths.

To apply test plan metrics for each of the ap-
proaches described in Table 1 will be applied to
the real time “UPS(uninterruptible power system)”
application.

We calculate total probability of occurrence as
follows:

Vi Use case Scenaric; & A Use Case R (R is Real Time UPS
Application)
For all use case scenarios between the starting point and the
ending point,
the particular scenario Scenario; is included in a Use case R
Vs action unit; € use case Scenaric
For all action units within a particular use case Scenarioy
we can calculate the total probability of occurrence with
(17 the weighed factor of Action unit; * probability of
action unit; ) / (3 probability ;).

Figure 12 (b) shows the alternative representation
of the action matrix, the use case dialog map, to
apply the calculation of the total probability of
occurrence in each use case scenarios. Figure 12 (a)
shows tabularly all possible action units of each use

Table 1. Test Plan Metrics
w: weight value ] : not

Weight value

Measures of test path
(=)

Length 1) Shortest path (siraple path) - least steps of actiony wei

2) Longest path (hardest path) - most steps of action

Criticality 1) Most critical path
2) Least critical path w20

important for software design development. But it is 1) Most rensable componeats i
. . . . Comp
useful if we use this issue with other categories of 2) Lesst reusable componests w20 am L
Reusability
the metrics.
. . . PO Sub-path Most rensable sub-path w>1
Second, the issue of Criticality is important to
312 OlE(l Hsts| (42 63) -
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case scenario in the use case restaurant service. The
Mealy model and the Moore model are theoretically
equivalent, but the Mealy model is a link-weighted
model and the Moore model is a node weighted model
{Beiz95]. We apply with both weight concepts. As
a result, each action umit is assigned a weighted
value with the value one and each link is also a
probability of occurrence.

Most Critical Scenario

The first metric is an adaptation of Musa’s ‘most
critical operational profile’ approach[9,10]. This metric
places greater weight on those scenarios that use
action units thought to be most critical. It assumes
that the designer can make these judgments. Figure
12 (a). shows the action matrix of the real time
UPS application. The use case scenarios defined by
the rows of this matrix include: normal status (variant
0), normal return (variant 1), service interrupt (variant
2), and owt-of-order (variant 3), and overload(variant
4) use case scenarios. The probability of occurrence
of each scenario is: variant 0 (0.54), variant 1(0.27),
variant 2 (0.025), variant 3 (0.0012), and variant 4
(0.0015). As this result, we can make a decision to

\\Power(kl )
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Quigut(i1)

3 mal_Power(gl)

Suppfied

T Quiof order(ct)
0.075™

-
\ 1ai|u;e~siamyl»r/
]

Figure 13. Ordered List of Test Scenarios
Most Reusable Components

choose the ‘normal return’ scemario because it has
the highest value of probability of occurrence. Figure
13 displays the ordered list of test scenarios as follows:
the first direct path of ‘normmal status’ scenaric which
consists of the sequence of action units 'bl->((gl->
11->ml1->pl->rl)||(f1->j1)’, the second direct path of
‘normal return’ scenario which consists of sequences
of action units ’al->((gl->11-> ml->pl->rl)j(f1->j1)),
the third direct path of ’service interrupt’ scenario
which consists of sequence of action units ‘cl->
dl->el->g1->h1->i1->j1->k1->11->m1->nl->01->p!’,
the fourth direct path of ‘outof-order’ scenario, the
fifth direct path of ‘overload’ scenario, and other
combinations in Figure 13.

Figure 14 (a) displays three different types of
geometric figures: a triangle, a rounded rectangle, an
oval, and diamond. The triangle implies a particular
component is used just one time on just a single
one of the paths. The rounded rectangle implies that
this component is used on two paths. The diamond
implies that this component is used on four paths.
The oval implies that this component is used on
five paths. The reusability weight is defined as the
number of paths that use the particular component.

Therefore, Figure 14 (b) shows the values ‘reusability
weight’ of each action unit. The values can indicate
whether a particular action unit is reusable or not.
We may say that the unit action is reusable when
the value of the particular unit is at least 2.

Figure 14 (c) indicates the total values of reusability
components on each path (scenario). Due to the ‘most
critical scenario’, we say that path 1 (normal status)
and path 2 (normal retum) are better than path 4
(out-of-order) and path 5 (overload), which are better
than path 3 (service interrupt). But if we measure
each path based on the ’most reusable component’,
then we recognize that path 1 and path 2 are more
usable than other paths.
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Scenari at{bi|cl|dl el ftygtiht]it] j1| k1|11 mi ntjol} plial]ri
A — 3
Main Path /1Y —[ 2 j 3
(Normal status) 2 3
Variant 1 LN 2 3[4 5 6
(Normal return) P |- 3 —
Variant 2 —
(Senvice interrupt)) 1 _AZ /5N 4 /@ J 6
Variant 3 () )
{Out-of-Order) 1 2 4|3 \f/ 617
Variant 4
{Overload) /N 2 \e 3 6 \7
(@)
alt bt ¢l dl el f1 gt h1 i1 1 kI H m! nt ol pl gt ri
EachWelghtvelue 1 { 1T 1 1 1T 1 1 1 1 1 1 T 1t 1 1 1 1
ReuscbilityWeight Y Vv ¥ Y V¥ 2 2 2 Y 2 ¥ 2 5 2 Y 4 2 5
(b)
Path 1 Path 2 Path 3 Path 4 Path 5
#2 4 4 3 3
#4 1 1 1 1
#5 2 2 2 2 2
Total Amount 22 22 10 20 20
(c)
Figure 14. Most Reusable Component
Most Reusable Sub-Paths stena,.cﬁmum atipt]ctdi[er| Aigintfit| a0 mwi n 01‘91 at | 11 | Jotd ervedity
er::;sw 1 » 2 , : % ‘A/r 5 [ a,w-m-m-y‘r
This metric is similar to the previous mefric except tomgre | | K o BLY L] | B
that it places greater weight on scenarios which (sgﬁ'fﬁimm; l 2| [l feffeol | 8?;"03'/':3/:’%
share common subpaths. Figure 7 shows one example (0o ! : SUCSOREREE S e
\erioad) 4131 s D rocsetsi-0cors
how to identify each cluster of the sequence of re- A‘o ’ : i - :
. . . Figure 15. Most Reusable Subpaths Length of
usable components in all possible scenarios of the Path

real time ‘UPS’ use case application. Figure 15 shows
several different types of geometric figures: an dotted
shaded elliptical figure and a shaded elliptical figure.
The elliptical figure shows the cluster over two paths

with reusable subpaths. The shaded elliptical figures
show iteratively or repeatedly the cluster of reusable
subpaths in paths. The dotted one displays the smallest
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cluster, which consists of two components, in paths,
but it is less useful because this size is smaller
than the smallest dialog unit within this application.
Figure 15 displays the core pattern (cluster) in the
use case dialog map.

On pathl and path?, we can see the ‘longest reusable
subpath’ which is ‘m!’ through ‘rl’ represented by
the ellipse. On pathl, path?, and path3, we can see
the reusable subpath ‘11’ through ‘ml’, represented
by the dotted shaded elliptical figures.

- In reality, we can use this metric to prioritize the
important paths. After done by most critical scenario,
we had better apply this metric to recognize the
most important subpath. Therefore, we may also
use this metric of the shortest and the longest path
on the concepts of most critical scenario and most
reusable component. As a result, we can clearly
determine a basic main path, by first making an
ordered list of all paths.

6. Conclusion

We introduce our approach how to apply testing
design specification during the design stage of real
time object-oriented development. Focusing on extended
interaction diagram, which represents the behavioral
properties of system design, there is actually testing
“specifications” without source codes. Design driven
testing will make a decision to order of all possible
scenarios to test first, to maximize reusability, and
to minimize test cases for real time application system.
Our proposed testing approach [12,13,14] is also
very well applied for modeling real time object-oriented
system. We will consider to separate action component
with sub-action components which is represented with
some nested mechanism for handling concurrency,
telecommunication, real time system.
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