References
- Berglund DL and Eversman S. Flow Cytometric measure-ments of pollutant stresses on algal cells, Cytometry 1988; 9: 150-155 https://doi.org/10.1002/cyto.990090209
- Breeuwer P, Drocourt JL, Bunschoten N, Zwietering MH, Romouts FM and Abee T. Characterisation of uptake and hydrolysis of fluorescein diacetate and carboxy-fluorescein diacetate by intracellular esterases in Sac-charomyces cerevisiae, which result in accumulation of fluorescent product, Appl. Environ. Microbiol. 1995; 61: 1614-1619
- Dorsey J, Yentsch C, Mayo S and McKenna C. Rapid analytical technique for the assessment of cell metabolic activity in marine microalgae, Cytometry 1989; 10: 622-628 https://doi.org/10.1002/cyto.990100518
- Franklin NM, Adams MS and Stauber RP. Development of an improved rapid enzyme inhibition bioassy with marine and freshwater microalgae using flow cytometry, Archives of Environmental Contamination and Toxicology 2000; 40: 469-480
- Gala WR and Giesy JP. Flow cytometric techniques to assess toxicity to algae, In: Landis WG, van der Schalie WH(eds). Aquatic toxicology and risk assessment, American Society for Testing and Materials, Philadelphia, PA, 1990; 13: 237-246
-
Grill E, Loffler S, Winnacker EL and Zenk MH. Phytoche-latins, the heavy-metal-binding peptides of plant, are synthesised from glutathione by a specific
$\gamma$ -glutamylcysteine dipeptidyl transpepticlase (phytochelatin syn-thase), Proc. Natl. Acad. Sci. USA. 1986; 86: 6838-42 https://doi.org/10.1073/pnas.86.18.6838 - Hamer DH, Thiele DJ and Lemontt. Function and autoregu-lation of yeast copperthionein, Science 1985; 228: 685-690 https://doi.org/10.1126/science.3887570
- Howden R and Cobbett CS. Cadmium-sensitive mutants of Arabidopsis thaliana, Plant Physiol. 1992; 99: 100-107
- Humphreys MJ, Allman R and Lloyd D. Determination of the viability of Trichomonas vaginalis using flow cytom-etry, Cytometry 1994; 15: 343-348 https://doi.org/10.1002/cyto.990150410
- Jin CD. Effect of Benzyladenine on Development of En-zymes Related to Ascorbate-Glutathione Pathway in Senescing Wheat Leaves, J. Plant Biol. 1995; 38(1): 47-54
- Kaprelyants AS and Kell DB. Rapid toxicity assessment of bacterial viability and vitality by rhodamine 123 and flow cytometry, JM Appl. Bacteriol. 1992; 72: 410-422 https://doi.org/10.1111/j.1365-2672.1992.tb01854.x
- Mannervik B. The isozymes of glutathione S-transferases, Adv. Enzymol. Relat. Ares. Mol. Biol. 1985; 57: 357-417
- Michalska AE and Choo KHA. Targeting and germ-line transmission of a null mutation at the metallothionein I and II loci in mouse, Proc. Natl. Acad. Sci. USA. 1993; 90: 8088-8092 https://doi.org/10.1073/pnas.90.17.8088
- Mittler R and Zilinskas BA. Detection of Ascorbate Perox-idase Activity in Native Gels by Inhibition of the Ascor-bate-Dependent Reduction of Nitroblue Tetrazolium, Anal. Biochem. 1993; 212: 540-546 https://doi.org/10.1006/abio.1993.1366
- Murasugi A, Wada C and Hayashi Y. Occurrence of acidlabile sulfide in cadmium-binding peptide I from fis-sion yeast, J. Biochem. JP. 1983; 93: 661-664 https://doi.org/10.1093/oxfordjournals.jbchem.a134222
- Ortiz DF, Ruscitti T, McCue KF and Ow DW. Transport of metal-binding peptides by HMTl, a fission yeast ABC-type vacuolar membrane protein, J. Biol. Chem. 1995; 270: 4721-4728 https://doi.org/10.1074/jbc.270.9.4721
- Pickett CB and Lu AY. Glutathione S-transferases: gene structure, regulation, and biological function, Ann. Rev. Biochem. 1989; 59: 61-86 https://doi.org/10.1146/annurev.bi.59.070190.000425
- Piscator M. Dietary exposure to cadmium and health effects: Impact of environmental changes, Environ. Health. Per-spect. 1985; 63: 127-131 https://doi.org/10.2307/3430038
- Rauser WE. Phytochelatins and related peptides: structure, biosynthesis and function, Plant Physiol. 1995; 109: 1141-1149 https://doi.org/10.1104/pp.109.4.1141
- Rauser WE. Structure and function of metal chelators pro-duced by plant; the case for organic acids, amino acids, phytin and metallothioneins, Cell Biochem. Biophys. 1999; 31: 19-48 https://doi.org/10.1007/BF02738153
- Surasak S, Samuel T, Desh PS, Richard V and Sayre T. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae, Plant Cell 2002; 14: 2837-2847 https://doi.org/10.1105/tpc.004853
- Tomsett AB and Thurman DA. Molecular biology of metal tolerances of plants, Plant Cell Environ. 1988; 11: 383-394 https://doi.org/10.1111/j.1365-3040.1988.tb01362.x
- Vilem Z, Oliver S and Arminio B. Growth controled oscilla-tion in activity of histone HI kinase during the cell cycle of Chlamydomonas reinhardtii (Chlorophyta), J. Phycol. 1997; 33: 673-681 https://doi.org/10.1111/j.0022-3646.1997.00673.x
- Vogeli-Lange R and Wagner GJ. Subcellular localisation of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides, Plant Physiol. 1990; 92: 1086-1093 https://doi.org/10.1104/pp.92.4.1086
- Waalkes MP, Hjelle JJ and Klaassen CD. Transient induc-tion of hepatic metallothionein following oral ethanol administration, Toxicol. Appl. Pharmacol. 1984; 74(2): 230-236 https://doi.org/10.1016/0041-008X(84)90147-9
- Zenk MH. Heavy metal detoxification in higher plants: a review, Gene 1996; 179: 21-30 https://doi.org/10.1016/S0378-1119(96)00422-2