DOI QR코드

DOI QR Code

Gas Hydrate BSR-derived Heat Flow Variations on the South Shetland Continental Margin, Antarctic Peninsula

가스수화물 BSR을 이용한 남극반도 남쉐틀랜드 대륙주변부의 지열류량 변화

  • 진영근 (한국해양연구원 극지연구본부) ;
  • 남상헌 (한국해양연구원 극지연구본부) ;
  • 김예동 (한국해양연구원 극지연구본부) ;
  • 김규중 (한국해양연구원 극지연구본부) ;
  • 이주한 (한국해양연구원 극지연구본부)
  • Published : 2003.06.30

Abstract

Bottom simulating reflectors (BSR), representing the base of the gas hydrate stability field, are widespread on the South Shetland continental margin (SSM), Antarctic Peninsula. With the phase diagram fur the gas hydrate stability field, heat flow can be derived from the BSR depth beneath the seafloor determined on multichannel seismic profiles. The heat flow values in the study area range from $50mW/m^2$ to $85mW/m^2$, averaging to $65mW/m^2$. Small deviation from the average heat flow values suggests that heat flow regime of the study area is relatively stable. The landward decrease of heat flow from the South Shetland Trench to the continental shelf would be attributed to the landward thickening of the accretionary prism and the upward advection of heat associated with fluid expulsion. The continental slope 1500m to 3000m deep, where BSRs are most distinguished in the SSM, shows relatively large variation of heat flow possibly due to complex tectonic activities in the study area. The local high heat flow anomalies observed along the slope may be caused by heat transport mechanisms along a NW-SE trending large-scale fault.

Keywords

References

  1. Ashi, H. and A. Taira. 1993. Thermal structure of the Nankai accretionary prism as inferred from the distribution of gas hydrate BSRs. p. 137-149. In: Thermal Evolution of the Tertiary Shimanto Belt, Southwest Japan: An Example of Ridge-Trench Interaction. ed. by M.B. Underwood. Geological Society of America Special Paper 272.
  2. Camerlenghi, A. and E. Lodolo. 1994. Bottom simulating reflector on the South Shetland margin (Antarctic Peninsula) and implications for the presence of gas hydrates. Terra Antartica, 1, 154-157.
  3. Carson, B., G.K. Westbrook, and R.J. Musgrave et al. 1993. ODP Leg 146 examines fluid flow in Cascadia margin. EOS, 74, 345-347.
  4. Davis, E.E., R.D. Hyndman, and H. Villinger. 1990. Rates of fluid expulsion across the northern Cascadia accretionary prism: constraints from new heat flow and multichannel seismic reflection data. J. Geophys. Res., 95, 8869-8889. https://doi.org/10.1029/JB095iB06p08869
  5. Dickens, G.R. and M.S. Quinby-Hunt. 1994. Methane hydrate stability in seawater. Geophys. Res. Lett., 21, 2115-2118. https://doi.org/10.1029/94GL01858
  6. Dillon, W.P., J.W. Nealon, M.H. Taylor, M.W. Lee, R.M. Drury, and C.H. Anton. 2001. Seafloor collapse and methane venting associated with gas hydrate on the Blake Ridge-causes and implications to seafloor stability and methane release. p. 211-233. In: Natural Gas Hydrates: Occurrence, Distribution and Detection. eds. by C.K. Paull and W.P. Dillon. Geophysical Monograph 124.
  7. Ganguly, N., G.D. Spence, N.R. Chapman, and R.D. Hyndman. 2000. Heat flow variations from bottom simulating reflectors on the Cascadia margin. Mar. Geol., 164, 53-68. https://doi.org/10.1016/S0025-3227(99)00126-7
  8. Gray, W.C. 1979. Variable norm deconvolution. Ph.D. thesis. Stanford Univ. 101 p.
  9. Gonzalez-Casado, J.M., J.L. Giner-Robies, and J. Lopez-Martinez. 2000. Bransfield Basin, Antarctic Peninsula: Not a normal backarc basin. Geol., 28, 1043-1046. https://doi.org/10.1130/0091-7613(2000)28<1043:BBAPNA>2.0.CO;2
  10. Hamilton, E.L. 1978. Sound velocity-density relations in seafloor sediments and rocks. J. Acoust. Soc. Am., 63, 366-377. https://doi.org/10.1121/1.381747
  11. Hyndman, R.D., K. Wang, T. Yuan, and G.D. Spence. 1993. Tectonic sediment thickening, fluid expulsion and the thermal regime of subduction zone accretionary prism: the Cascadia margin off Vancouver Island. J. Geophys. Res., 98, 21865-21876. https://doi.org/10.1029/93JB02391
  12. Jin, Y.K., Y. Kim, S.H. Nam, and K.J. Kim. 2000. Morphotectectic variation of the Shackleton Fracture Zone around the Antarctic-Scotia plate boundary off the northern Antarctic Peninsula. Korean J. Geophys., 3, 210-218.
  13. Jin, Y.K., M.W. Lee, Y. Kim, S.H. Nam, and K.J. Kim. 2003. Gas hydrate volume estimations on the South Shetland continental margin, Antarctic Peninsula. Antarc. Sci. (in press)
  14. Kaul, N., A. Rosenberger, and H. Villinger. 2000. Comparison of measured and BSR-derived heat flow values, Markan accretionary prism, Pakistan. Mar. Geol., 164, 37-51. https://doi.org/10.1016/S0025-3227(99)00125-5
  15. Kim, Y., H.-S. Kim, R.D., Larter, A. Camerlenghi, L.A.P. Gamboa, and S. Rudowski. 1995. Tectonic deformation in the upper crust and sediments at the South Shetland Trench. p. 157-166. In: Geology and Seismic Stratigraphy of the Antarctic Margin. eds. by A.K. Cooper, P.F. Barker, and G. Brancolini. AGU, Antarc. Res. Ser. 68.
  16. Kim, Y., Y.K. Jin, and S.H. Nam. 1997. Crustal Structure of the Shackleton Fracture Zone in the Southwestern Scotia Sea. p. 661-667. In: The Antarctic Region: Geological Evolution and Process. ed. by C.A. Ricci. Terra Antarctic Publication, Siena.
  17. Klepeis, K.A. and L.A. Lawver. 1996. Tectonics of the Antarctic-Scotia plate boundary near Elephant and Clarence Islands, West Antractica. J. Geophys. Res., 89, 20211-20231.
  18. Kvenvolden, K.A. 1993. A primer on gas hydrate. p. 279-291. In: The Future of Energy Gases. ed. by D.G. Howell. et al. US Geological Survey professional paper 1570.
  19. Kvenvolden, K.A. 2000. Natural gas hydrate: Introduction and history of discovery. p. 9-16. In: Natural Gas Hydrate in Oceanic and Permafrost Environments. ed. by M.D. Max. Kluwer Academic Publishers, Dordrecht.
  20. Kvenvolden, K.A., M. Golan-Bac, and J.B. Rapp. 1987. Hydrocarbon geochemisty of sediments offshore from Antarctica: Wilkes Land continental margin. p. 205-213. In: The Antarctic continental margin: Geology and Geophysics of offshore Wilkes Land. eds. by S.L. Eittreim and M.A. Hampton. Circum Pacific Council for Energy and Mineral Resources, Earth Science Series, Houston.
  21. Larter, R.D. and P.F. Barker. 1991. Effects of ridge cresttrench interaction on Antarctic-Phoenix spreading: Forces on a young subducting plate. J. Geophys. Res., 96, 19583-19607. https://doi.org/10.1029/91JB02053
  22. Larter, R.D., M. Rebesco, L.E. Vanneste, L.A.P. Gamboa, and P.F. Barker. 1997. Cenozoic tectonic, sedimentary and glacial history of the continental shelf west of Graham Land, Antarctic Peninsula. p. 1-27. In: Geology and Seismic Stratigraphy of the Antarctic Margin, Part 2. eds. by P.F. Barker and A.K. Cooper, AGU, Antarc. Res. Ser., 71.
  23. Lawver, L.A., B.J. Sloan, D.H.N. Barker, M. Chidella, R.P. Von Herzen, R.A. Keller, G.P. Klinkhammer, and C.S. Chin. 1996. Distributed, active extension in Bransfield Basin, Antarctic Peninsula: Evidence from multibeam bathymetry. GSA Today, 6(11), 1-6.
  24. Lee, D.K., Y.K. Jin, Y. Kim, and S.H. Nam. 2000. Seismicity and tectonics around the northern Antarctic Peninsula from King Sejong station data. Antarctic Science, 12, 196-204.
  25. Lengseth, M.G., G.K. Westbrook, and M. Hobart. 1990. Contrasting geothermal regimes of the Barbados ridge accretionary complex. J. Geophys. Res., 95. 8829-8844. https://doi.org/10.1029/JB095iB06p08829
  26. Livermore, R., J.C. Balanya, A. Maldonado, J.R. Martinez, J.R. Fernandez, C.S. Baldeano, J.G. Zaldivar, A. Jabaloy, A. Barnolas, L. Somoza, J.H. Molina, E. Surinach, and C. Viseras. 2000. Autopsy on a dead spreading center: The Phoenix Ridge, Drake Passage, Antarctica. Geol., 28, 607-610. https://doi.org/10.1130/0091-7613(2000)28<607:AOADSC>2.0.CO;2
  27. Lodolo, E. and A. Camerlenghi. 2000. The occurrence of BSRs on the Antarctic Margin. p. 199-212. In: Natural gas hydrate in oceanic and permafrost environments. ed. by M.D. Max. Kluwer Academic Publishers, Dordrecht.
  28. Lodolo, E., A. Camerlenghi, and G. Brancolini. 1993. A bottom simulating reflection on the South Shetland Margin, Antarctic Peninsula. Antarctic Sciences, 5, 207-210.
  29. Lodolo, E., A. Camerlenghi, G. Madrussani, U. Tinivella, and G. Rossi. 2002. Assessment of gas hydrate and free gas distribution on the South Shetland margin (Antarctica) based on multichannel seismic reflection data. Geophys. J. Inter., 148, 103-119.
  30. Minsull, T. and R. White. 1989. Sediment compaction and fluid migration in Makran accretionary prism. J. Geophys. Res., 94, 7387-7402. https://doi.org/10.1029/JB094iB06p07387
  31. Nowlin, Jr. W.D., and W. Zenk. 1988. Westward bottom currents along the margin of the South Shetland Island arc. Deep-Sea Res., 35, 269-301. https://doi.org/10.1016/0198-0149(88)90040-4
  32. Pankhurst, R.J. 1982. Rb-Sr geochronology of Graham Land, Antarctica. J. Geol. Soc. London, 139, 701-711. https://doi.org/10.1144/gsjgs.139.6.0701
  33. Pelayo, A.M. and D.A. Wiens. 1989. Seismotectonis and relative plate motion in the Scotia Sea region. J. Geophys. Res., 94, 7293-7320. https://doi.org/10.1029/JB094iB06p07293
  34. Shipley, T.H., M.H. Houston, R.T. Buffler, F.J. Shaub, K.J. McMillen, J.W. Ladd, and J.L. Worzel. 1979. Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. AAPG Bull., 63, 2204-2213
  35. Sloan, E.D. 1998. Clathrate Hydrate of Natural Gases. Marcel Dekker, New York. 705 p.
  36. Smith, W.H.F. and D.T. Sandwell. 1997. Global sea floor topography from satellite altimetry and ship depth sounding. Science, 277, 1956-1962. https://doi.org/10.1126/science.277.5334.1956
  37. Taira, A., I. Hill, J. Firth, and the Leg131 Shipboard Scientific Party. 1991. Proceedings of the ODP, Initial Reports 131, Ocean Drilling Program, College Station, TX.
  38. Tanahashi, M., S. Eittreim, and J. Wannesson. 1994. Seismic stratigraphic sequences of the Wilkes Land margin. Terra Antarc., 1, 391-393.
  39. Tinivella, U., E. Lodolo, A. Camerlenghi, and G. Boehm. 1998. Seismic tomography study of a bottom simulating reflector off the South Shetland Margin (Antarctica). p. 141-151. In: Gas hydrates: Relevance to world margin stability and climate change. eds. by J.-P. Henriet and J. Mienert. Geological Society London Special Publication 137.
  40. Trehu, A.M., G. Lin, E. Maxwell, and C. Goldfinger. 1995. A seismic reflection profile across the Cascadia subduction zone offshore central Oregon: new constraints on methane distribution and crystal structure. J. Geophys. Res., 100, 15101-15116. https://doi.org/10.1029/95JB00240
  41. Tucholke, B.E., G.M. Bryan, and J.I. Ewing. 1977. Gashydrate horizons detected in seismic-profile data from the Western North Atlantic. AAPG, 61, 698-707.
  42. Wang, K., R.D. Hyndman, and E.E. Davis. 1993. Thermal effects of sediment thickening and fluid expulsion in accretionary prisms: model and parameter analysis. J. Geophys. Res., 98, 9975-9984. https://doi.org/10.1029/93JB00506
  43. Yamano, M., S. Uyeda, Y. Aoki, and T.H. Shipley. 1982. Estimates of heat flow derived from gas hydrates. Geol., 10, 339-343. https://doi.org/10.1130/0091-7613(1982)10<339:EOHFDF>2.0.CO;2