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Analytical Beam Field Modeling Applied to Transducer
Optimization and Inspection Simulation in Ultrasonic
Nondestructive Testing

Martin Spies

Abstract To ensure the reliability of ultrasonic nondestructive testing techniques for modern structural materials,
the effects of anisotropy and inhomogeneity and the influence of non-planar component geometries on ultrasonic
wave propagation have to be taken into account. In this article, fundamentals and applications of two analytical
approaches to three-dimensional elastic beam field calculation are presented. Results for both isotropic materials
including curved interfaces and for anisotropic media like composites are presented, covering field profiles for various

types of transducers and the modeling of time-dependent rf-signals.
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1. Introduction

In ultrasonic nondestructive evaluation use is
made of the physical properties of elastic waves in
solids in order to detect defects and material in-
homogeneities. To ensure the reliability of ultra-
sonic inspection techniques for modern structural
materials, the effects of anisotropy and inhomogene-
ity and the effects of non-planar component geome-
tries on ultrasonic wave propagation have to be
taken into account. In this article, fundamentals
and applications of two analytical approaches to
three-dimensional elastic wavefield calculation are
presented, which can applied to model ultrasound
generation, propagation and scattering in complex-
structured materials and components.

Based on a mathematical formulation involv-
ing Green’s dyadic displacement tensor function, ap-
propriate evaluation yields a representation of the
displacement vector of transducer wavefields which

is convenient for effective numerical computation.

With respect to bulk wave propagation the numer-
ical evaluation of Green’s dyadic function - which
is particularly tedious in the anisotropic case - is
circumvented by applying a reciprocity-based ap-
proach. The presented formulation involves charac-
teristic quantities obtained from plane wave theory
and appears as a point source superposition repre-
sentation including the respective point source di-
rectivities. The approach allows to include all as-
pects relevant to testing simulation for such configu-
rations as far as bulk wave propagation is concerned
(Spies, 1994a; Spies, 2001). The results obtained us-
ing this approach are valid even in the near-field of
the beam. Based on the presented formulation, effi-
cient far-field approximations have been derived in
(Spies, 2002a), which is particularly useful in view
of low calculation times. This will also be addressed
in this article.

Representative results for both isotropic mate-
rials including curved interfaces and for anisotropic
media like composites are presented, covering field
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profiles for various types of transducers and the
modeling of time-dependent rf-signals. Simulation-
assisted transducer optimization is also illus-
trated for both single-element and multiple-element,

probes.

2. Fundamentals
2.1. Equation of Motion

The dynamic behaviour of a linear elastic
medium can be described by the equation of motion
for the displacement vector u. For a homogeneous
solid it can be written in a general form according
to

(V- € V) utowu=-f, (1)

e}

where g is the mass density, V is the gradient vec-
tor, f accounts for the volume force density and
w denotes the circular frequency, if a time depen-
dence ~ e~ is assumed. The elastic properties of
the homogeneous solid are described by the fourth
rank elastic (stiffness) tensor, which depends on the
elastic material constants. A most general represen-
tation for this tensor has been given recently for
orthotropic media of arbitrary orientation (Spies,
2001), which includes the higher symmetries tetrag-
onal, transversely isotropic, cubic and isotropic as
special cases.

2.2. Plane Waves

The plane wave solutions are in the form
u,(R,w) =Ud,exp [jKK-R|,  (2)

where K is the propagation direction, U is the (com-
plex) amplitude and « denotes the wave type. The
determination of the polarization vectors i, and the
wave numbers K, can be performed by applying
Fourier-transforms with respect to R in terms of

(K, w) = /_ T uRw) KR PR (3)

to the equation of motion (1) for £=0. This yields
the dispersion equation

E(an) . Q(K,W) =4, (4)

where the tilde denotes the transformed guantities.
In this equation, the 3d-space-time-Fourier repre-
sentation of u appears as well as the wave matrix

W(EK,w)=K-C-K-o’I, (5)

where I is the unity matrix. The polarization vectors
u, and the wave numbers Ko, can be obtained as the
eigenvectors and the eigenvalues of the wave matrix.
The latter provide the modulus of phase velocity
vq according to v, =| s, |7' with slowness s, =
KK Jw.

In anisotropic media, the phase velocity is dif-
ferent from the velocity of energy transport, which
is in the case of lossless materials given by the group

velocity according to
Qa:<U8—K+K@> (6)
£AS D/ K

For transversely isotropic and orthotropic materi-
als with arbitrary spatial orientation, these quanti-
ties have been given previously (Spies, 1994a; Spies,
2001).

2.3. Bulk Wave Properties

In an isotropic medium, one can distinguish
between the compressional (P) and the horizontally
or vertically polarized shear waves (SH and SV).
The decomposition into these three eigenwaves is
based on the orientation of the polarization vectors
with respect to the horizontal plane. In a weakly
anisotropic medium, the plane waves can still be la-
beled as quasi-P (¢P), with approximately longitu-
dinal polarization, and quasi-SH (¢SH) and quasi-
SV (¢SV), with approximately transverse polariza-
tion. In a strongly anisotropic medium, there are
three plane waves with mutually orthogonal polar-
izations in every direction of propagation. These are
designated as P, ¢S1 and ¢S2 according to their
polarizations when propagated in certain symmetry
directions. The speeds of these waves are different
Additionally, the direc-
tions of phase flow and energy flow involved with

and vary with direction.

these waves are different, so that phase and group
velocity have to be discerned.
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2.4. Consideration of Multilayered Media

Each interface between the layers produces re-
flected and refracted waves, which is considered by
evaluating the respective conditions of continuity.
For planar interfaces, Cartcsian coordinates with
unit vectors {e,, €, €.} can be used, so that the
interface lies in the z-y-plane. Assuming ideal rigid
contact between adjacent layers requires the conti-
nuity of the slownesses (s - e, continuous, i = z,y,
"Snell’s law’) and the continuity of the particle dis-
placements and the normal tractions according to

Uil 43 Rt = 3 gy ()

o
e, I +d e T =3 e T (8)
o o
where T designates the stress tensor. From these
equations, the amplitudes U%* and UT® of the re-
flected and transmitted waves of type a can be de-
termined in dependence of the incident amplitude
Ul In the case of non-planar interfaces, these
boundary conditions have to be applied locally. The
local structure of an inhomogeneous medium can be
described by dividing it into several layers, each of
them having different elastic properties, as has been
described for layered transversely isotropic media in
(Spies, 1994b).

3. Analytical Modeling Approaches
3.1. Point Source Superposition

The basis for the elastodynamic beam field
calculation procedure presented here is the mathe-
matical formulation of Huygens’ principle (Pao and
Varatharajulu, 1976). For wave radiation by an iso-
lated vibrating body or a fixed surface enclosing a
source, where each point on the surface S of the
body vibrates with the same angular frequency w,
the displacement vector outside the surface S can
be written as

uRew) = [ [ {a® 0 o EaRw)
- [ T® )] -GAR.w)} dS', (9)

where - with T being the stress tensor - the trac-
tion n T and the displacement u at this surface

|

act as sources of the generated wavefield. With
AR=(R - EI), G and X arc Green’s dyadic and
triadic functions,:;zhose components represent the
displacement and stress field, respectively, at posi-
tion R, generated by three mutually perpendicular
(point) forces acting at R’ on swface S.

For evaluating transducer radiation, S is as-
sumed to lie in the z-y-plane of a Cartesian coordi-
nate system, i.e. n=e,. In selecting the Green’s
tensor functions entering in Eq. (9) one has two op-
tions. The first one is to choose the free-space func-
tions as has been done e.g. in (Guo and Achenbach,
1995), where, however, Q(E/ ,w) is an unknown func-
tion which has to be determined. Here, the Green’s
functions for the elastic half-space are chosen, where
- considering the surface to be stress-free - the triadic
stress-tensor function accordingly fulfills the bound-
ary condition that

It
[I[=

e (10)

e, .éhalf

z=0

so that

uRw)= [ e R )] -G (ARw)S
’ (1)

follows, where the dyadic Green’s function for the

half-space has accordingly been introduced.

From (Wu et al., 1991), where the far-field ra-
diation of vibrating point sources in anisotropic me-
dia is considered, a far-field expression for gh“”
accounting for the bulk wave contributions can be
inferred according to

G/ (ORw) = 3k, (K(ER)) b, (R(AR)

oK, (AR) AR

- 12
* x| AR (12)

where 11, and K, = K, K designate the (plane wave)
polarization vector and the wave vector of wavetype
«, respectively. The Cartesian components of vec-
tor g are the directivities for transversely (in z-
or y-direction) and normally (in z-direction) acting
point sources on the stress-free surface. g, and 0,
- as well as the group velocity vector ¢, - are func-
tions of the wave propagation direction K that pro-
duces an energy contribution along the spatial direc-
tion A/E An cfficient numerical evaluation scheme
for the K(@)—relaﬁonship has been described in
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(Spies, 2001).
is multivalued the different wave decay properties
(O(R~'/?) and O(R~°/%) instead of O(R™1)) have
to be taken into account, as described in (Spies,
2002b). Using Eq. (12) and defining the surface
traction

In directions where group velocity

t(R,w)=e, TR v, (13)

Eq. (11) finally leads to

//Z ® w)g, (KER))|

e)w\R R |/cal AR)
( (AR)) 4 | AR |

uR,w)

’

S (14)

which is valid in the far-field of the point source,
and which can be applied to model transducer gen-
erated bulk wave fields in isotropic and anisotropic
media. To circumvent the intricate determination of
g, using Green’s function, a method based on the
reciprocity theorem is applied (Wu et al., 1990).

Assuming a traction whose magnitude is zero
outside the transducer aperture and unity within,
the integration in Eq. (14) has to be performed over
the transducer aperture. Numerical integration on
the basis of an equally spaced rectangular grid can
be applied for planar surfaces, with grid points sep-
arated at a distance of less than half a wavelength to
fulfil the sampling theorem. For curved - e.g. cylin-
drical or spherical - surfaces a respective projection
of a planar grid onto the curved surfaces is applied.
If multiple element transducers are considered, the
aperture is accordingly structured with tractions of
zero or unity magnitude, respectively, where also ad-
ditional phase delays can be introduced. The results
obtained for continuous wave displacement fields us-
ing this computational scheme are valid even in the
near-field of the beam (Spies, 2001). On the basis
of Eq. (14), an efficient far-field approximation has
been derived in (Spies, 2002a), which is summarized
below.

In order to determine transducer beam fields
for broadband input signals, a straight-forward com-
putational approach for modeling of transient sig-
nals is applied, where the harmonic (cw) solution is
calculated at many frequencies and then this data
is numerically Fourier transformed into the time do-
main. In this approach, a function for the frequency
spectrum of the transducer input signal has to be se-
lected, e.g. to properly model an experimental input
signal.

In modeling the insounification into a compo-
nent using immersion technique, the evaluation of
Eq. (14) is performed accordingly. The particle dis-
placement is calculated at the interface grid points
and used as the prescribed displacement distribution
at this interface. Taking into account the respec-
tive boundary conditions, this distribution is then
propagated from the interface into the material as
described above. The same principle holds for de-
fects and other discontinuities with consideration of
the appropriate point source directivities. Based on
Kirchhoff’s theory, this has been presented previ-
ously in (Spies, 2000).

3.2. Far-Field Approximation

Neglecting the influence of the traction-free
material/defect surface, characterized by the re-
spective point source directivities, the radiation be-
haviour of the vibrating source with aperture S fol-
lows from Eq. (1) according to

oK, (R—R')-(R-R) ,
| = ds . (15
PR |RR| (15)
In the far-field, where R > R/, it is
R-R| = R-R-R’, (16)
K, R-R) = K,(R), (17)

and thus

1 N
far _ 1 .
W Rw) | = 5 e (Ka(®)-R)

e

The integral in this equation can be solved as in the

’)ds’. (18)

isotropic case (Stenzel and Brosze, 1958) yielding

exp(juwR/ca(R(R)))
A
ATR
where the relationships K, -¢, =w and K, -R =
K, ¢, R/ca = wR/c, have been exploited, ¢, be-
ing the modulus of the group velocity vector. For

[ul* (R, w)|= T(R),(19)

a circular piston source with radius a - introducing

K(R)=/K2R) + K; (R) - the directivity func-
tion results as
I (aKARIR, ()
Fcirc B = PPN s Aczrc—zﬂ'a (20)
(aKu(B)K(R))
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while for a rectangular piston source of area 2a x 2b
it is
sin(aK, (R) K, (f_i)) sin(bKa (E) Ky (E))
) = TR —
(“Ku (E)KJ (E>> (Z)Ka (E)Ky (E)>
Arect = 4ab. (21)

Frect(R —

These expressions are the same as in the isotropic
case, but here the wave numbers and the compo-
nents of the K-vectors depend on the spatial coor-
dinates.

4. Application to Transducer Opti-
mization

For industrial comaponents of arbitrary shape,
the transducer fields strongly depend on the mate-
rial or interface curvatures and the coupling condi-
tions. Thus, simulation of transducer sound fields
is most uscful for evaluating measured signals and
for designing transducers which are optimized for
the respective set-up. Duc to the large number of
transducer parameters and their complex influence
on the sound field, experimental work can thus be
significantly reduced, which is useful for both single-
element and multiple clement transducers.

4.1. Immersion Probe for Cylindrical Com-
ponent Inspection

The component to be inspected is a steel pipe
with an inner diameter of 34 mm and a wall thick-
ness of 20 mm. Using immersion technique, the pipe
is assumed to be tested for defects from the interior,
with high sensitivity in a range from 4 mm to 8 mm
depth. Usually, the inspection of such components is
performed using so called bi-focal transducers. Such
line-focusing probes exhibit beam ficlds which are
focused in the axial plane, but diverging in the ra-
dial plane, with an additional focal spot being gener-
ated due to the component’s curvature. To improve
the inspection performance, a transducer has been
elaborated, which - operated at 10 MHz frequency
- three-dimensionally focusses the beam field to a
depth of 6 mm. In the optimization, both frequency
and the piezoelement dimensions have been varied,

while a fixed immersion distance of 15 mm has been

Fig. 1 Geometry of the optimized piezoelement applied
to focus to a depth of 6 mm (expanded scale along z-axis)

radial axial

# [mm]
= [mrm)
T

T T
503 11 3 5

y [mm}

Fig. 2 Beam field represcntations for the optimized
transducer in the radial (left) and axial (right) plane
(frequency 10 MHz, immersion distance 15 mm)

assumed according to the inner pipe diameter. De-
tails on the optimization procedure can be found in
(Spies, submitted).

As shown in Fig. 1, the calculated shape of the
rectangular piezoelement of 7 x 7 mm? is character-
ized by a convex curvature of 80 mm radius in the
radial plane, and a concave curvature in the axial
plane (radius 40 mm). The beam field calculated
for this transducer configuration is shown in Fig. 2.
The desired coverage of the depth range from 4 mm
to 8 mm is achicved within an amplitude range be-
tween 0 dB and -6 dB as indicated. The amplitude
continuously decreases, at a depth of 15 mm it is still
approximately -15 dB with respect to the absolute
maximum value. For the optimized probe, the abso-
lute maximum of the beam field is approximately 5
times as high as compared to the absolute maximum
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produced by a commercial line-focusing transducer
of similar dimensions (Spies, submitted).

4.2. Phased Array on Composite Material

The anisotropic elastic behaviour of modern
structural materials like composites and the result-
ing wave propagation characteristics lead to con-
siderable difficulties in applying conventional ultra-
sonic inspection procedures. However, the effects of
beam field skewing and distortion can be consider-
ably compensated by proper focusing and steering
of array transducer fields (Spies et al., 2002).

As an example, the beam fields generated by
a conventional angle-beam array transducer have
been evaluated and optimized for a layered [03/90]-
composite material. The elastic characteristics of
this material are described in (Hosten et al., 1987).
The 2 MHz-probe - applied to generate (quasi-) lon-
gitudinal waves - consists of a rectangular trans-
ducer (16x8 mm?) mounted on a perspex wedge.
The wedge angle is 19.6° resulting in an insonifi-
cation angle of 45° in ferritic steel. In calculating
the delay times for the 16 elements, the direction-
ally dependent ultrasonic velocities have been taken
into consideration. As schematically shown in Fig.
3, the delay times are determined for each element
in order to focus the generated beam to a focal point
with coordinates (¢, z¢) in the plane of insonifica-
tion.

X

Fig. 3 Schematic sketch of a conventional angle-beam
array transducer. Beam focusing to the point (zy,zy)
is accomplished by delay time calculation using the
anisotropic material’s elastic properties.

Figure 4 displays polar plots of the probe’s di-
rectivity patterns - calculated at a distance of r = 40
mm for various focal modes. The solid line repre-
sents the directivities without time-delayed excita-
tion of the elements. As expected, the insonifica-
tion angle is different from 45°, which is obtained
in ferritic steel. However, point focusing allows to
direct the beam field to various angles and even im-
prove the field amplitudes, as represented by the
dashed curves in Fig. 4. Thus, the difficulties usu-
ally experienced in inspecting anisotropic materials,
i.e. beam skewing and distortion effects, can be con-
siderably minimized.

5. Application to Inspection Simula-
tion

The ultrasonic signals picked up by a trans-
ducer in a - as an example - pulse-echo inspection ex-
periment are determined in the following way. First,
the transducer-generated displacement distribution
is calculated at the position of the scatterer using
Eq. (14), then the scattered wave field is deter-
mined as described in detail in (Spies, 2000). The
(time-domain) signal detected by the transducer is
finally determined using Auld’s reciprocity theorem
which exploits the displacement and traction at the

-5
1
1
-10 - !
L}
»
!
3 ’
15 —
unfocused AN )l
1l focus (30,30) ~—
+  focus (30,15)
focus {15,30)
-20 T T T T T T T
-5 0 5 10 15

Fig. 4 Polar plots of the beam field directivity patterns
calculated at a distance of r = 40 mm for various fo-
cal modes at indicated in the legend (composite’s layers
parallel to the surface).
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scatterer’s position in presence and absence of the
scatterer, respectively (Auld, 1979).

The far-field expressions for planar vibrating
sources according to Eqgs. (19) to (21) can be used
to perform approximate calculations. Thus, a simple
expression can be formulated e.g. for the amplitude
dynamic curves (ADC) measured in a pulse-echo in-
spection experiment. With R, and Rg designat-
ing the spatial coordinates of the transducer and
the planar scatterer, respectively, the magnitude of
the particle displacement detected by the transducer
can be expressed according to

-~ — ArAg
[u,(Rp)| = Uy - R(Rr—Ryg) - TRe-R, P

‘T2(Rs—Ry) I's(Rp—Rg). (22)

Arss and I'ryg are the constant factors and the
directivity functions characterizing the transducer
and the scatterer, respectively, as specified in Egs.
(20) and (21). Additionally, the respective reflec-
tion coefficient R(Rp — Rg) has been introduced
to account for the reflection of the incident wave
field at the defect. Although the influence of the
traction-free material surface on the transducer radi-
ation characteristics as well as the particular bound-
ary conditions at the scatterer are neglected in using
this relationship, the results compare well with those
obtained on the basis of Eq. (14) (Spies, 2002a).

5.1. Calculation of Defect Scattered Signals

The addressed problem is to predict the signal
from reflectors in a solid, observed in a pulse-echo
measurement. It is assumed that normally incident
longitudinal waves and obliquely incident transverse
and longitudinal waves in an immersion geometry
are used. A circular, unfocused transducer of 12.7
mm (half inch) diameter and of 5 MHz center fre-
quency is considered. Three sets of scattering ob-
jects are considered: spherical pores, circular cracks
and of cylindrical scatterers, centered at a distance
of 25.4 mm into an aluminium block. They have re-
spective diameters of 0.125 mm, 0.25 mm, 0.5 mm, 1
mu, 2 mm and 4mm. The smallest diameters are in
the regime in which the defect is small with respect
to the wavelength.

The signal observed during the normal inci-
dence reflection from the front surface of the alu-
The trans-
ducer to front-surface distance is taken to be 50.8

minum block is shown in Figure 5.

Planar transduter

] /
:SDE ik—hvi/\‘/ \/\H\/;

-1000 -

Amp [au.]
T
o
o
1

T
69.00 69.25 £9.50 89.75 J0.00

t [us]

Fig. 5 Referencc signal calculated for the circular, un-
focused transducer of 5 MHz center frequency.

min, which places the surface into the transducer
nearfield. The beam fields have been calculated in
water, as well as in the aluminum block assuming
a water path of 50.8 mm. The normal incidence
results have been shown in (Spies, 2002c), while
the results for oblique transverse and longitudinal
wave incidence, respectively, have been exemplarily
shown for the 45°-case in (Spies, 2003a).

Figure 6 displays the maximum flaw signal am-
plitudes as a function of the reflector diameter for
both normally and obliquely incident longitudinal
waves. For each configuration, the signal amplitude
for the 4 mm reflector is maximal and has accord-
ingly been set to 0 dB. The results obtained for
transversc waves and for the focused transducer in
principle show the same behavior.

The results obtained for the circular cracks re-
veal that the amplitude is principally proportional
to the square of the reflector radius, as far-field rela-
tionships also suggest (Spies, 2003a). This holds for
both normal incidence and oblique incidence, where
the circular crack has been assumed to be perpendic-
ularly oriented with respect to the incident central
ray. Thus, dividing the scatterer’s diameter by a
factor of 2 leads to a decrease of the scattered signal
amplitude by a factor of 12 dB. However, referring
to the larger scatterers (1, 2 and 4 mm diameter)
the decrease in amplitude is less than 12 dB. This
is due to the beam field amplitude variation across
the defect surface (Spies, 2002c¢).

For the cylindrical and the spherical reflectors,
in principle the expected amplitude behavior is also
obtained. Here, additional calculations have been
performed for a reflector diameter of 3 mm. Divid-
ing the defect diameter by a factor of two leads to
a decrcase of the scattered signal amplitudes by a
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Fig. 6 Flaw signal amplitude plotted versus reflector
diameter for normal (top) and oblique (bottom) L-wave
incidence (unfocused transducer). The expected ampli-
tude behavior according to Eqns. (3-5) is indicated by
the solid lines. Similar diagrams result for the focused
transducer as well as for incident transverse waves.

factor of 3 dB and 6 dB, respectively, for the 2, 3
and 4 mm reflectors, while for the smaller diameters,
the decrease of the calculated amplitudes is larger.
As the results obtained for the spherical pores for a
frequency of 10 MHz reveal, the deviation from the
expected behavior depends on the respective ratio
of wavelength to reflector diameter. At 10 MHz, the
deviations from the expected amplitude behavior oc-
cur at a reflector diameter of 1 mm, while in the 5

Planar transducer/normal L-wave

)
o
1

g ]
©
-12
u
k] ]
5
5 184 ~ oyl exp
i=l 4 - - — _C}A
2 -
5 ,/ S sphe exp
—24 4 P sphe
1 B — - — sphe 10 MHz
-30 T T — T T
0.0 0.5 1.0 1.5 2.0

Diameter (mm)

Fig. 7 Enlarged view of the signal amplitude plotted
versus diameter for the cylindrical and the spherical re-
flectors (unfocused transducer, normal L-wave incidence
at 5 and 10 MHz, respectively). The expected amplitude
behavior according to Eqn. (4) and (5) is indicated by
the solid lines.

MHz-case, the deviation of calculated from the ex-
pected amplitude drop already occurs at a diameter
of 2 mm (Fig. 7).

The scattering process has been considered
by using Kirchhoff’s approximation, which assumes
that each point on the scatterer’s surface behaves
like & point on an infinitely long reflecting plane. Al-
though the k-7 values (wavenumber times scatterer’s
radius) are small for some of the defects considered,
the obtained results suggest that here Kirchhoff’s
approximation is still applicable for the case of pla-
nar scatterers, which is consistent with measure-
ments recently performed on flat-bottomed holes us-
ing far field conditions (Schmitz and Spies, unpub-
lished). However, from the results obtained for the
cylindrical and the spherical reflectors it can be in-
ferred, that the application of Kirchhoff’s theory in
the employed point source superposition technique
leads to deviations from the expected amplitude be-
havior for curved scatterers in the regime where k- r
is equal to 5 and less. The results obtained for the
circular cracks and the spherical pores are consistent
with those in (Gray and Thompson, 2001), where
both approximate and exact models have been ap-
plied. In principle, the latter have shown that the
amplitude decrease for the small scatterers is larger
than predicted by Kirchhoff models.

5.2. Amplitude Dynamic Curves in
Composites

Two unidirectionally carbon-fiber reinforced
composite specimens with fibers being orientated at
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Fig. 8 Simulated and measured pulse-echo amplitude
dynamic curves for 5 mm flat-bottomed holes in a uni-
directional composite. The fibers are aligned at an angle
of 15° (top, defect depth 15 mm) and 75° (bottom, de-
fect depth 30 mm) to the surface. Note the different scan
paths (x = 0 mm marks the lateral defect position).

15% (No. 1) and 75° (No. 2) to the surface, respec-
tively, have been examined. These specimens were
supplied with a number of 3 mm and 5 mm flat-
bottom holes (FBH) at various depths. The pulse-
echo experiments have been performed with a piezo-
electric normal-transducer of 2.25 MHz frequency
and 6.3 mm in diameter (Krautkrdmer MSW-QC
2,25). generating (quasi-) longitudinal waves. Fur-
ther details on the measurements can be found in
{Spies and Jager, 2003b). For these inspection pa-
rameters, amplitude dynamic curves (ADC) have
been simulated using the far-field relationships. As
an example, Figure 8 shows the results obtained for
5 mm FBHs, which were located in a depth of 15 mumn
in specimen No. 1 and in a depth of 30 mm in spec-
imen No. 2. In the latter case, the measured ADC
does not drop below -30 dB, due to the experimen-
tal noise level. In these results, the effects of wave
field spreading and skewing arc more or less appar-
ent. Good agreement between the simudated and the
measured ADCs is obtained, with differences in the
order of about 2 to 3 dB.

6. Summary

Analytical approaches to model ultrasonic non-
destructive evaluation in general allow for reason-
able calculation times. These models can be em-
ployed to consider the various wave phenomena sep-
arately, which is desirable from the practical point
of view. Since approximations are applied, the ap-
proaches have to be selected according to the re-
spective problem of interest. The presented meth-
ods are three-dimensional approaches and have been
verified in comparison with experimental results pre-
viously. For frequencies in the range from 0.5 to 5
MHz, which is usually of interest in ultrasonic NDT,
point source superposition provides simulation re-
sults within minutes on standard PCs, while calcu-
lations based on the far-field approximation can be
performed within seconds. The presented simula-
tion methods can be efficiently employed to clarify
wave propagation cffects and to optimize transduc-

ers as well as inspection procedures.
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