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Transferring Distance-Amplitude Correction Curves
- A Model-based Approach
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Abstract In practice, it is common to manufacture reference blocks containing simple reflectors to obtain
distance-amplitude correction (DAC) curves. However, the construction of DAC curves in this manner requires the
use of a large number of specimens with appropriate curvatures and reference reflectors located at various depths.
Therefore, less costly and quantitative procedures are strongly needed. To address such a need, in this study, we
have developed model-based transfer curves to relate a DAC curve obtained in a particular reference configuration

with that for a completely different configuration. An example of transferring DAC curves, using the proposed

transfer curves, is given.
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1. Introduction

In ultrasonic standards practice, it is common
to manufacture reference blocks containing simple
reflectors, such as flat-bottom holes (FBHs) or
side-drilled holes (SDHs). These blocks are often
used to determine system sensitivity and to
(DAC)
curves. However, the construction of DAC curves

perform  distance-amplitude  correction
in this manner is expensive and not always a

simple procedure since a large number of

specimens  with  appropriate  curvatures and
reference reflectors located at different depths in
the specimen are needed. Therefore, less costly
and quantitative methods are strongly needed. To
address such a need, theoretical ultrasonic models
can be a very promising tool.

To date, extensive research has been carried

out to develop theoretical ultrasonic beam and

flaw scattering models. As a result, there now are
available very wversatile ultrasonic measurement
models that allow one to simulate the signals
measured in many ultrasonic setups (Thompson
and Gray, 1983, Sedov et al, 1992, Schmerr,
1998). As an example of using such ultrasonic
measurement models, Schmerr and Thompson
(Schmerr and Thompson, 1997) reported on the
pioneering work of T. Gray at the Center for
NDE, lowa State University, who showed that
one can simulate the DAC curves for FBHs
located beneath planar, convex, and concave
surfaces and proposed model-based curvature
correction factors to compensate for curvature
effects and relate the measurements on curved
specimens to those on less costly planar
specimens.

In this

model-based approach similar to that described by

study, we will show that a
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Schmerr and Thompson can be used in a much
more general context. Specifically, we will show
that one can obtain model-based transfer curves
that allow one to account for different calibration
block surface curvatures, flaw type (SDH or
FBH), and flaw size and thus relate the DAC
curve for one setup configuration to another quite
different configuration. This transferring of DAC
to another will be

curves from one case

demonstrated with a specific example.

2. Ultrasonic Measurement Models

To construct DAC curves for a FBH or a
SDH
ultrasonic measurement

theoretically, we need to have an
model for the test
set-ups shown in Fig. 1 where the scatterer is
either a FBH or a SDH. Below, we will
present suitable measurement models for both of
these reflectors.

ALAA_AL A LA LA AL
Ultrasonic Ultrasonic
Transducer Transducer

Fig. 1 Schematic

diagrams of the
immersion testing for (2) a FBH and (b) a
SDH in the solid specimen

pulse-echo

2.1. Ultrasonic measurement models

All of the measurement models used in this

study are based on a reciprocity-based
relationship, similar to that originally derived by
Auld (Auld, 1979),

components of the received voltage,

where the frequency
VR(CU)’ (for

harmonic disturbances of the form exp(— iwd)),

are related to stress and velocity fields on the
surface of the scatterer in two problems, labeled
a and b, respectively. The fields in problem a are
due to the transducer firing with the scatterer
present while in problem b the fields are with the
scatterer absent. The frequency component of the
received voltage Viy(w) in terms of these fields

can be expressed as (Schmerr, 1998)

®
Fo(@)=—PL [ (0 ey as
szcpvo Vo 573,
1)
where (r(’") ]«(7”)) are the stresses and velocity

fields for problems m= a, b, respectively, Sz is
the area of the transducer and S is the surface

of the scatterer, #; are components of the

outward normal to the scatterer (pointing into the

solid), p; ¢ { are the density and wave speed of

the fluid, and v(m> are the velocities on the face

of the transducer, which we consider as a piston
m=a, b. The quantity

Blw) is the system efficiency factor, which can

source, for problems
be obtained through the measured voltage in a
particular reference calibration setup (Schmerr et
al, 1994).

In applying Eq. (1), we will make several
assumptions that will greatly facilitate the
modeling of the reference scatterer. First, we will
assume that the transducer wave field incident
on the scatterer in problem a and b can be
written in a quasi-plane wave form (paraxial
approximation) (Schmerr, 1998). For the fields in
the problem b, for

W = I}a(a’)"gb)da exp(ikge" X) where I}a(w) is a

normalized velocity amplitude (that depends upon

example, we have

x as well as w, but only the w dependency is
shown for simplicity), and e”, d“ are unit
vectors describing the incident wave direction
and polarization, respectively, for a wave of
type a@(a=p sy) and ks =w/cy is the
corresponding wave number. With this assumption

Eq. (1) becomes
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G“exp (ikye” x)dS(x)

(2)
where 7 is the radius of the transducer, - is the
density of the solid, and ¢y (@ =p, sv) are the
wave speeds of compressional and shear waves in

the solid. The quantity G® is given by

Ga _ 1 ~a da da a Cijklni"jj'gl
- 2 Tymdy tde ———— (3)
it} 3

TEVE :
where %5V, are the stresses and velocity

components on the surface of the scatterer due to
an incident plane wave of type « (@ = p,sv) and
unit displacement amplitude.

2.2. Measurement model for a FBH

For a small FBH where the beam variations
over the flaw surface are negligible, the velocity

amplitude term, (T}a)z over the surface of the
scatterer can be removed from the integral. The
integral of G® over the surface of the scatterer

far-field scattering
amplitude of the scatterer. Therefore, the received
voltage from a FBH can be written as

» cf  pel
FBH [V }ZA { i/g’rz “/)_IZ?J (4)

then corresponds to the

where f is the frequency and I}p(a)) is the
normalized velocity amplitude which is calculated
using a beam model such as a multi-Gaussian
beam model (Schmerr, 2000). For such a beam

model we have

I}”(a}):id" 4,, T detGg(O)
A BD) T JdetGl(z,)
'xl
. T 1
exp(ik,z, Yexp(ik! z,) exp{l»k‘x—[c%)]»—x}

(5)

where, A,, B, are height and width factors of

individual Gaussian beams, z; is the distance

from transducer to interface, z, is the distance

from interface to the flaw, x,=(1/2)k 7 is the

Rayleigh distance, 7%’ is the transmission

coefficient, and G3(0), G(z,) matrices were
defined in detail by Schmerr (Schmerr, 2000).

Based on the Kirchhoff approximation, the
pulse-echo far-field scattering amplitude from a
FBH at normal incidence, A {w), can be written
as (Schmerr and Sedov, 2003):

a,lo)= L ©

K= w/ch is the wave number in the

solid, and b is the radius of the FBH.
For a large FBH where beam variations are

where

important, Eq. (4) can still be used, but where
the FBH surface is broken into rings and the
total response calculated as the sum of the
response of each of those rings (Schmerr and
Sedov, 2003).

2.3. Measurement model for a SDH

For modeling the response of a SDH, Eq. (4)
is not suitable since the incident fields can extend a
significant distance along the length of the hole.
However, if one assumes that the scattered wave
field of the SDH can be obtained from the
Kirchhoff approximation (Schmerr, 1998) then Eq.
(2) reduces to

V()= ﬁ((u){lgpz_ﬂ [ e -nexplaise” x{ Lj( » )dy}dc

el |,

(N
where C,, is a line integral over the lit portion
of the cylinder surface, and L is the length of the
SDH, which is taken larger than the length over
which beam variations are important.

If the beam variations over the cross-section
of a SDH are negligible, the received voltage
from a SDH can be calculated by (Schmerr and
Sedov, 2003),

Vol e 6 o) o] =0

—ingi® pef
(8)
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far-field
scattering amplitude at normal incidence from a
SDH of radius 5 and length L, obtained by using
Kirchhoff approximation, can be written as

The corresponding  pulse-echo

T

Ay(0)= L#{S, (2k2b)+ i, k20 )~ 3} )

where S; and J; are Struve and Bessel
functions, respectively.

Model studies have shown that a more
general SDH model which takes into account
beam variations gives essentially the same results
as the above model (Schmerr and Sedov, 2003).
Thus, here we have based all of our SDH

modeling results only on Eq. (8).
2.4. System Efficiency Factor

The system efficiency factor, 8(w), can be
computed by the deconvolution of an
experimental signal obtained from a reference
reflector by a corresponding theoretical reference
reflector model, as given in Eq. (10) (Schmerr et

al, 1994):

/(@)

B(w)= (@) (0) (10)
where V,{(w) is an experimentally measured
voltage, <v,(w)/vy> is the average received

0.14 T T T T
042 s A B

i H
B 8 10 12 14 16 18 20
Frequency (MHz)

(a)

velocity by the theoretical reference model and
W(w) is a Wiener filter.

If we take the plane interface (the front
surface of a specimen immersed in water) to be
our reference reflector in our immersion testing
setup, then <v,(w)/vy> is given by (Rogers and
Van Buren, 1974):

! . ik,r* krt) L (kr?
<, (@)> /v, = RG” exp(2ik 2, ){1 - exp[zl—ZI)|:J0 [2'—21] —iJ, [Z'—Z‘H}

where R is the reflection coefficient of a plane
fluid-solid

interface, and J;, and J; are the Bessel functions

compressional wave for a planar

of the zero and first order, respectively.

2.5. Model Verification

In order to gain confidence in using
model-based DAC curves, we need to verify that
the measurement models do indeed work for these
setups. To show this, both measurement models
were compared to the experimental signals
measured from two different flaw sizes: 1.19 mm
(3/64 inch) and 3.18 mm (8/64 inch) diameter
FBHs, and 1 mm (2.56/64 inch) and 4 mm
(10.24/64 inch) diameter SDHs which are the
smallest and the largest flaw considered in this

study. To determine the system efficiency factor of

18(=)i

OO

0 2 4 6 8 10 12 14 18 13 20
Frequency, MHZ

(b)

Fig. 2 System efficiency factor measured for the planar transducer of 5 MHz center frequency, 1/4 inch diameter
from (a) the ASTM resolution block and (b) aluminum block with a 2 inch water path
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these ultrasonic measurement systems, the front
surface reflection signals were captured from an
ASTM resolution block (which contains 1.19
(3/64), 198 (5/64) and 3.18 mm (864 inch)
diameter FBHs located at from 0.05 inch to 1.25
inch metal paths) and an aluminum specimen
(which contains 1 mm (2.65/64 inch) and 4 mm
(10.24/64 inch) diameter SDHs at a 25.4 mm metal
path) immersed in water. The transducer used was
a SMHz center frequency planar transducer 3.65
mm in diameter and the water path length from
transducer to block was 50.8 mm water path. By
deconvolution of these signals by the reference
reflector model (Eq. 11) we determined the system

efficiency factors of these measurement systems as

——
i | — Exp. Data
= Wirch

Amp (V)

i I i i
732 734 736 738 74
Time (Msec)

4
72 722 724 726 728 73

(@

shown in Fig. 2 (a) and (b).
Fig. 3 and Fig. 4
between experimentally measured

show the comparison
signals and
predicted time domain waveforms for the FBHs
and SDHSs, respectively. As shown in Fig. 3 and
Fig. 4, the agreement between the theoretical
prediction and the experiments is very good,
demonstrating the validity of the models in these
cases.

3. Model-based DAC curves

As mentioned before, to construct
model-based DAC curves for reference reflectors

(FBHs and SDHs), the system efficiency factor

73 735 74 745
Time (usec)

(b)

Fig. 3 Comparison of predicted flaw signals from (a) a 3/64 inch diameter FBH and (b) an 8/64 inch
diameter FBH with experiments. Solid line: measured signal, dotted line: predicted signal.
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Fig. 4 Comparison of predicted flaw signals from (a) a 1 mm diameter SDH and (b) a 4 mm diameter
SDH with experiments. Solid line: measured signal by experiment, dotted line: predicted signal.
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needs to be known. In this study, in order to
specify a system efficiency factor, the measured
Vo(8), for the

reflection from a plane surface is assumed to be

voltage in the time domain,

given by Eq. (12) which was also used in the
benchmark study (Thompson, 2002 and Schmerr,
2002).

V()= [l—cos(znzf” t):|for OStS%

0 otherwise

(12)

where ¢ is the time in microseconds and f, is
the center frequency of the transducer, in MHz.

Time {p sec)

@

Fig. 5 (a) and (b) show the calculated reference
signal by use of Eq. (12) and the system
efficiency factor (obtained by using Eq. (11) and
Eq. (12)) for a planar transducer of 5SMHz center
frequency, 6.35 mm diameter.

Using the ultrasonic measurement models
previously described (Eq. (4) and Eq. (8)) and
the system efficiency factor, we obtained the
complete A-scan waveforms from which we
calculated the peak-to-peak voltages. By varying
the metal path length and plotting these
peak-to-peak voltages we constructed DAC curves
for FBHs and SDHs for different flaw sizes and
interface curvatures. In all cases, the water path

distance remained fixed at a distance of 50.8 mm.

18 (@}

a 2 4 [ 8 10 12 14 16 18 20
Frequancy, MHz

(b)

Fig. 5 (a) The reference reflection signal using Eq. (12), and (b) the system efficiency factor for the planar
transducer: 5 MHz center frequency, 0.5 inch diameter

0.3

030

0.26

o
X}

P-P Amp (V)

o

o
=1
@

=)

2 04 06 08 1 12 14 16 18 2
z, (inch)

(@

o

L B

o
n

o
@

o
@

P-P Amp (V)

o
s}

o

2
=1
&

02 04 0B 08 1, 12 14 168 18 2
z, (inch

(o)

Fig. 8 Model-based DAC curves for (a) FBHs, (b) SDHs in an aluminum specimen with planar interface
immersed in the water with variation in the metal distance (from 2 mm (0.07 inch) to 50.8 mm

(2 inch)).
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In the case of flaw size, we chose six
different diameters of flaws ranging from 1.19
mm (3/64 inch, designate by #3) to 3.18 mm
(8/64 inch, designate by #8) in steps of 1/64
inch. And, we considered two types of interface
curvatures: convex and concave with a variation
of the radius of curvature from 76.2 mm (3 inch)
to 2032 mm (8 inch) in steps of 254 mm (1
inch). In this paper, we only show the predicted
DAC curves for FBHs and SDHs in a planar,
101.6 mm (4 inch) radius (convex), and -101.6
mm (-4 inch) radius (concave) aluminum
specimen at different depths from the surface.
Figs. 6 through 8 show the constructed
model-based DAC curves for FBHs and SHDs

using our ultrasonic measurement models.
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4. Transferring DAC curves

4.1. Transfer curves

Based on model-based DAC
propose three types of new transfer curves:

curves, we

interface transfer curves, flaw type ftransfer
curves, and flaw size transfer curves.

To obtain the interface transfer curves, we
calculated the amplitude ratio between the planar
interface DAC
concave interface DAC curves for both the FBH

and SDH. In Fig. 9 are shown the transfer curves

curves and the convex and

from planar to convex interface obtained from
taking the ratio of the values of DAC curves for
convex interface to the DAC curves for the

O
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Fig. 7 Model-based DAC curves for (a) FBHSs, (b) SDHs in an aluminum specimen with 4 inch radius convex interface
immersed in the water with variation in the metal distance (from 2 mm (0.07 inch) to 50.8 mm (2 inch)).
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Fig. 8 Model-based DAC curves for (a) FBHS, (b) SDHs in an aluminum specimen with -4 inch radius concave interface
immersed in the water with variation in the metal distance (from 2 mm (0.07 inch) to 50.8 mm (2 inch})).
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planar interface. And in Fig. 10 are shown the
interface transfer curves from planar to concave
interface obtained through ratio of the values of
DAC curves for concave interface to DAC curves
for the planar interface. In both cases, the
interface transfer curves strongly depend on the
flaw type and radius of curvature of the interface
but depend only very weakly on the flaw size.
Thus,

interface curvature

these curves can compensate for the
effect and allow us to
construct DAC curves for either a convex and
concave interface from already measured DAC
curves from a planar interface, which are always
simpler (and cheaper) to obtain.

To obtain transfer curves for flaw type, we
calculate amplitude ratio between the DAC curves

for a FBH and SDH based on our model-based

curves. Fig. 11 shows the flaw type transfer
curves from SDH to FBH in a planar interface
specimen obtained from taking the ratio of the
values of DAC curves for the SDH to DAC
curves for the FBH. However, these flaw type
transfer curves do not depend on the radius of
curvature of the interface. Therefore, we can use
the flaw type transfer curves for a planar interface
only to account for change in the flaw type.

To account for flaw size, we construct the
flaw size transfer curves by calculating the
amplitude ratio of a set of DAC curves for six
different size flaws to the amplitude of the
DAC curves corresponding to the #5 flaw size.
Fig. 12 shows the flaw size transfer curves.
Also, these curves do not depend on the
interface radius of curvature.
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Fig. 9 Interface transfer curves for (a) FBHs and (b) SDH from planar interface to convex interface (ratio of
values of DAC curves for the convex interface to the planar interface)..
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Fig. 10 Interface transfer curves for (a) FBHs and (b) SDHs from planar interface to concave interface (ratio
of the values of concave interface DAC curves to the planar interface DAC curves).
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Ratio (dB)
Ratio {48}

Z? {Inch) Z, {Inch)
Fig. 11 The flaw type transfer curves from SDH to  Fig. 12 The flaw size transfer curves for size
FBH (ratio of values of DAC curves for the difference (ratio of #3 ~ #8 DAC curves
SDH to the FBH for the planar interface) to #5 DAC curves for the planar interface)

P-P Amp (dB)
PP Amp {dB}

P-P Amp {dB)
P-P Amp {dE)

Fig. 13 Example of transferring DAC curves from DAC curves for #4 SDH with planar interface to DAC
curves for #6 FBH with convex interface. (a) DAC curves for #4 SDH with planar interface, (b) after
using curvature transfer curves, (c) after using flaw type transfer curves, and (d) after using flaw size
transfer curves. Solid line: desired DAC curve, dotted one: transferred DAC curve.
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4.2. Example

To demonstrate the use of the proposed
transfer curves, we propose to start with the DAC
curve for a #4 SDH in a planar interface
specimen and show how the transfer curves can
transform this starting DAC curve into a
"desired" DAC curve for a #6 FBH in a 5 inch
radius convex interface specimen. Fig. 13 (a)
shows the model based DAC curve for the #4
SDH in the planar interface specimen. In order to
obtain the DAC curve that will correspond to the
#6 FBH in the convex interface specimen, we
first multiply the starting DAC curve by the
appropriate interface transfer curve (Fig. 9 (b), R
= 5) to account for the change in interface
curvature. Fig. 13 (b) shows the transferred DAC
curves after using the interface transfer curves
along with our final goal, i.e. the desired DAC
curve which is the DAC curve for a #6 FBH in
a convex interface specimen. Second, we apply
the flaw type transfer curves (Fig. 11, #4) to
account for the change in flaw type to obtain the
DAC curve for a #4 FBH beneath a 5 inch
radius convex interface, as shown in Fig. 13 (c)
(where again we show the final desired DAC
curve). Finally, we use the flaw size transfer
curve (Fig. 12, #6) to go from a #4 FBH to a #6
FBH. In Fig. 13 (d) we compare the desired
DAC curves for #6 FBH to the transferred DAC
curve obtained from DAC curves for #4 SDH
shown in Fig. 13 (a). As shown in Fig. 13 (d),
the accuracy obtained using the proposed transfer
curves is indeed excellent (less than 0.3 dB).

Conclusions

In this study, we proposed a new and
efficient approach to obtain DAC curves using
model.  We
constructed DAC curves theoretically for both a
flat-bottom hole (FBH) and a side-drilled hole
(SDH) for different flaw sizes and interface
curvatures. Based on these model-based DAC

an ultrasonic measurement

curves, we proposed three types of transfer
curves that account for interface curvature, flaw
type, and flaw size. In addition, we demonstrated
the use of these transfer curves to "morph" the
DAC curve for a SDH in a planar specimen to
the DAC curve for a FBH of different size in a
curved specimen. If these procedures are
carefully validated experimentally, they can form
the basis for a new set of highly efficient and

cost-effective tools for uitrasonic systems.
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