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A Study for the Measurement of a Fluid Density in a Pipe
Using Elastic Waves

Jin Oh Kim* ", Kyo Kwang Hwang* and Haim H. Bau**

Abstract The effect of liquid confined in a pipe on elastic waves propagating in the pipe wall was studied
theoretically and experimentally. The axisymmetric motion of the wave was modeled with the cylindrical membrane
shell theory. The liquid pressure satisfying the axisymmetric wave equation was included in the governing equation
as a radial load. The phase speed of the wave propagating in the axial direction was calculated, accounting for
the apparent mass of the liquid. Experiments were performed in a pipe equipped with ring-shaped, piezoelectric
transducers that were used for transmitting and receiving axisymmetric elastic waves in the pipe wall. The measured
wave speeds were compared with the analytical ones. This work demonstrates the feasibility of using pipe waves

for the determination of the density and, eventually, the flow rate of the liquid in a pipe.
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1. Introduction In order to overcome some of the

disadvantages of conventional ultrasonic flowmeters,

Ultrasonics provides a convenient, non-intrusive this paper suggests the use of annular transmitters
means for the measurement of various properties as shown in Fig. 1(b). The cylindrical
of liquids confined in pipes and tanks transducers (Kim et al., 2003) generate and detect
(Lynnworth, 1989). The ultrasonic transducers can axisymmetric waves that are transmitted in the
be mounted on the pipe or container's outer walls pipe wall. One transducer excites radially the
and can be maintained and replaced without any pipe and induces an axisymmetric wave that
downtime. propagates along the pipe wall A second

The conventional design of an ultrasonic transducer detects the wave at some distance
flowmeter was depicted schematically in Fig. from the point of origin, and the propagation
I(a). In this scheme, one measures the time is measured. This propagation time is
time-of-flight of an ultrasonic wave propagating affected by the characteristics of the fluid
between a  transmitter and a  receiver confined in the pipe.

(Busch-Vishniac, 1999). In this method, however, The effect of fluids on elastic waves
as the tube's diameter decreases so does the propagating in solid pipes is one example of
measurement  sensitivity. Moreover, it may be fluid-structure  interaction problems (Junger and
difficult to design sufficiently small transducers Feit, 1986; Grighton, 1988). The wave motion in
for small diameter tubes. a pipe without fluid loading has been extensively
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studied by utilizing the full equations of elasticity
(Gazis, 1959) and by using thin shell theory
(Graff, 1991). A considerable amount of work
has also been done on fluid-loaded shells (Brevart
and Fuller, 1993).

This paper presents the feasibility of
measuring fluid density in a pipe using elastic
waves as a first step towards the design of an
ultrasonic flowmeter of the type depicted in Fig.
1(b). The paper was organized as follows.
Section 2 described the mathematical model for
elastic waves propagating in the thin walls of

pipes containing liquids. In section 3, dispersion

equations relating the wave speed to the
frequency were derived. Section 4 described the
experimental set-up and measurements. These

measurements were subsequently compared with
experimental observations. Section 5 summarized
the results and made a conclusion.
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Fig. 1 Schematic diagram of ultrasonic flowmeters of

the conventional type (a) and of the new
design (b)

2. Mathematical Model

Consider elastic waves propagating in a pipe
having an inner radius R and wall thickness A.
Figure 2 depicts a segment of the pipe's wall.
We have treated the pipe wall as a thin shell.
Shell theory has the advantage of providing
simpler than the ones

expressions generated

using the full equations of linear elasticity. The
theory is known to yield reasonable results as
long as /R << 1 and the wavelengths are large
compared to the wall thickness (k4 << 1). In
the above, k is the wavenumber.

Fig. 2 Coordinates and displacement components in
an element of a cylindrical shell

The major approximations in the analysis
were:

(1) The pipe is perfectly circular, concentric, and
infinitely long.

(2) The liquid in the pipe is ideal, i.e. inviscid,
compressible, irrotational, and stationary.

(3) Transverse shear stresses and bending and
twisting moments are neglected, and all
stresses are averaged across the thickness of
the pipe to eliminate any radial dependence.

(4) The pipe is not pre-stressed, i.e. static stresses
due to liquid pressure, pipe weight, and
mounting are neglected, and all stresses in the
pipe are the result of the induction of the
elastic waves.

In the special case of an axisymmetric,
cylindrical membrane shell, the general thin shell
theory (Junger and Feit, 1986) simplifies to
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In the above u(x,r) and w(x?) are, respectively,
the axial and radial displacements; x is the axial
coordinate; ¢ is time; ¢ is the radial load;

cp=vE/p,(1-v?) ®3)

is the longitudinal 'thin-plate' velocity; £ is the
Young's modulus; o is the solid's density; and
v is Poisson's ratio of the pipe material.

The liquid pressure p satisfies the wave
equation (Kinsler et al., 2000)

2 2 2
op 1o op_1op @
or roor x” e/ o

where ¢ is the sound speed in the liquid
medium. The radial pressure g in eqn. (2) equals
the pressure p at r = R, ie.

g=pl. g (5)

Once the pressure equation is solved, the
radial liquid velocity v, can be computed using

the linearized radial momentum equation:

ot p, or (6)
At the pipe surface

ov,
ot

_ow

Y %)

Equations (6) and (7) are combined to obtain the
relation between w and p:

o

!
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e P ®

or

We seek solutions for the wave propagation
of the form

ux ) = U ", (%a)
w(x) = W ", (9b)
plxrt) = P(r) " (9¢)

where ¢ is the phase speed of the wave in the
pipe wall.

Upon substituting eqn. (9¢) in eqn. (4), a
modified Bessel equation is obtained for the
pressure amplitude P(r).

1 ap :
d +_—-k2(1-c—2)1)=0 (10)

2
dr rodr c

In general, the axial wavenumber % can be
complex, and the imaginary part represents the
attenuation. In this work, % is assumed to be real,
and ¥ = w/c, where  is the circular frequency
of the wave.

Equation (10) admits a solution of the form:

P(ry = A Lyr) + B Ko(yr) (11)

where y is the radial wavenumber expressed as:

y =k /1-[£] =2 1_(£) (12)
Ci Ci

Witness that y = 7y(ck) or y =

When ¢ <¢,;, 7 is real. When

Y (¢ w).
c> ¢cp v I8
imaginary. The cut-off frequency w.=#%k ¢, In
eqn. (11) /o and Ko are modified Bessel functions
of the first kind and of order 0. Iy(0) is finite
while Ky(0) is infinite. Thus, to assure bounded
solutions at » = 0, B is set to 0.
Since

dP|
dr

-4 d1o(yr)

r=R d}"

=4 y (¥R (13)

r=R
the boundary condition (8) can be rewritten as

pl,:R = A IO(VR) : ei(kx-wt)
LR (14)
"y LR

Equation (14) includes the apparent mass of the
liquid per unit area:

1(YR)

M) = Py L amy

(15)

Upon expressing the liquid pressure in terms
of the radial displacement of the wall, eqn. (2)
can be rewritten as

(16)

2
Cp

M) 1 aw
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The above expression suggested that the effect of

the liquid would increase as the radial
wavenumber 7y increased and the solid density

05 and the shell thickness % decreased.

3. Dispersion Relations

Upon substituting eqns. (9a) and (9b) into
eqns. (1) and (16), one obtains

SR
klil [CPHU kW =0 (17)

and
1 M ]

ikLlu+ — -1+ M) K “Alw

R R p,h Cp
=0 (18)
Requiring that the equations admit non-trivial
solutions and introducing the dimensionless
quantities

c M

h 2] (19)

c=cp, k=kh, h=R, and M(Y)= p,h
one obtains the characteristic equation:
_ —\2 —\2
Oi-M)(%)24—P+(1+M)(%)};z+ (1-v?) =0
(20)
Equation (20) represents the dispersion relation
between the non-dimensional phase speed ¢ and

the non-dimensional wavenumber & .
The equation can be expressed in terms of
the dimensionless frequency

e @

Eliminating k from eqn (20) produces the relation

between ¢ and the dimensionless frequency o:

Ly +M)(%Jl- l:l it @)gﬂ -

=0 (22)

3.1. A Pipe in Vacuum

When the pipe is in vacuum (or in air),
M = 0 and eqns (20) and (22) can be solved

explicitly to obtain the phase speed (E) as a

function of the wavenumber,

_2:[(E/Z)2 + 1} + ﬂ%/z)z - 1]2+4 v (7/7)

‘ 2 (E/Z)z

(23)

and the frequency,

(24)

Figures 3(a) and 3(b) depict, respectively, the
dimensionless phase speed ¢ as a function of

the dimensionless wavenumber k and the

dimensionless phase speed ¢ as a function of
the dimensionless frequency ©. In both cases,
y = 03. Since dc/dk < 0 in Fig. 3(a) and
dc/dw < 0 in Fig. 3(b), the phase velocity is
smaller than the group velocity.

When the frequency is high or the wall is
thin (5/ h>> 1), c approaches 1 and the phase
speed of the

Equation (17)
implies that in this case W = 0 and the pipe
It is
anticipated that in this case, there will be weak

speed ¢ approaches ¢, the

longitudinal wave in a thin plate.
has no motion in the radial direction.

interaction between the waves propagating in the
pipe wall and the confined liquid.
When the wave frequency is small and the

pipe wall is thick (5/ h>> D), ¢ approaches
(1-v?)" and the phase speed ¢ approaches the
speed of the in a rod

(E/ ps)m. Since the thin shell theory is used

longitudinal wave

under the assumption of h<<1, this case must

correspond to very low frequencies.
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When @/h=1, eqn. (18) implies U = 0 and
there is no motion in the axial direction. This
represents the cut-off frequency of the wave
propagation.

dimensionless phase speed, ¢

0 L L I . 1
0 05 1 1.5 2 25 3

dimensionless wavenumber, k/h

dimensionless phase speed, ¢

0.5 -

0 1 L 1 I

L
0 0.5 1 1.5 2 25 3
dimensionless frequency, «/h

b)

Fig. 3 Dispersion curves for an empty pipe. (a) the
dimensionless phase speed as a function
of the dimensionless wavenumber, (b) the
dimensionless phase speed as a function of
the dimensionless frequency.

3.2. Pipes with Confined Liquid

In the presence of liquid, the situation is
considerably more complicated since M (eqns. 20

and 22) is a complicated function of c.

32.1. When ¢ < ¢

The radial wavenumber ¥ (eqn. 12) is real

when ¢ < ¢, and there are no pressure

oscillations in the radial direction. The

dimensionless apparent mass of the liquid is:

— — — Ify/h

My=p LM 5)
v L(y/h)

where 7= v h and E:PI/ P . Figure 4(a) depicts
M(Y) as a function of 7. In the limiting case of
long wavelengths (y > 0), the dimensionless
apparent mass M(y)—=2p/ Y. In the other
extreme of short wavelengths (y— =), the

dimensionless apparent mass M) —ply.

322. When ¢ > ¢

When ¢ > ¢, the radial wavenumber 7V is

imaginary. In this case, we substitute n=i 7_/ and
replace the modified Bessel functions in eqn (11)
with regular Besse! functions. The dimensioniess
form of the apparent liquid mass is:

= p L) %
m=p e (26)

The Bessel functions of the first kind, J,(x), are

oscillatory functions of x. Thus M varies from
-co to +co somewhat like cot( 7). This behavior

is depicted in Fig. 4(b).
3.2.3. Dispersion Curves

Equations (20) and (22) were solved
numerically to obtain the dispersion relations.

Fig. 5(a) and 5(b) depict, respectively, the

dimensionless phase speed ¢ as a function of the
wavenumber k/h and ¢ as a function of the

frequency ®/h. 1In contrast to the case of the
empty pipe (Fig. 3), Fig. 5 exhibits a large
number of modes. The various modes are labeled
with Roman numerals. The presence of a large
number of modes could have been anticipated
based on the large number of branches of the

apparent liquid mass (Fig. 4b).
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The curve I in Figs. 5(a) and 5(b) represents
the dimensionless phase speed of the wave in the
liquid rather than in the pipe wall. Similar to the
curves in Fig. 3(b) for an empty pipe, the
dispersion curves in Fig. 5(b) exhibit sudden drops.

The curves II, III, IV, etc. represent the
waves in the pipe shell that are affected by the
liquid's presence. The curve II, which corresponds
to the fundamental mode, has a zero slope at
both low and high frequencies. The dispersion
curves of this mode for the empty pipe and for
the filled pipe are compared in Fig. 6, which
shows clearly the effect of the liquid on the
phase speed of the wave. When the frequency
is low and the shell wall is relatively thick

(@/h<<1), the dimensionless fundamental

mode's phase speed ¢ approaches (1-V*)")
which is the wave speed in an empty pipe. As

o/h is larger, the curve approaches the phase
speed of the wave in the liquid.

20 T T

dimensioniess apparent mass of liquid, M(y)
>
T
1.

o —_—

0 05 1 15 2
dimensionless radial wavenumber, y

(@)

L

dimensionless apparent mass of liquid, M(n)

1 [ 1
0 05 1 15 2

dimensionless radial wavenumber, n
(b)
Fig. 4 The apparent mass as a function of the radial

wavenumber when ¢ < ¢ (a) and when ¢ > ¢ (b)

dimensionless phase speed, ¢

dimensionless phase speed, ¢

Fig. 5

dimensionless phase speed, ¢

Fig. 6

0 05 1 15 2 25 3
dimensionless wavenumber, k/h

I I L
0 05 1 1.5 2 25 3

dimensionless frequency, o /h

(&)

Dispersion curves for a pipe containing stationary
water. (a) the dimensionless phase speed as a
function of the dimensionless wavenumber, (b)
the dimensionless phase speed a a function of
the dimensionless frequency

1 1 1
° 0 0.5 1 15 2

dimensionless frequency, ©/h

Dispersion curves of the fundamental mode for
the empty pipe and for the liquid-filled pipe
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The curves III, TV, V, etc.,, which correspond
to the higher modes, exhibit common behavior.

In an intermediate range of o/h, the curves have

flat regions with c equal to 1, which represents
the phase speed of the longitudinal wave in a
thin plate. This cotresponds to the case of W = 0
in eqn. (17), i.e., the case of no radial motion.

When (@/h<< 1}, the curves approach the phase

speed of the wave in the liquid.
4. Experiment

In the previous section, the effect of a liquid

confined in

a pipe on the elastic waves

propagating in the pipe wall was analyzed
theoretically. Based on the theoretical analysis, it
is anticipated that by measuring the wave's speed,
it should be possible to deduce the liquid's mass
density. The objective of this section is to
demonstrate that the trends predicted by the

theory can be duplicated in experiments.
4.1. Experimental Apparatus

Piezoelectric cylindrical transducers (Kim et
al., 2003) were used to generate and detect the
clastic waves in the pipe wall. Three pairs of
semi-annular, cylindrical transducers (ISTec Inc.),
were installed around an aluminum (1100-H14)
pipe, whose outer radius was 8§ mm, wall
thickness was 1 mm, and whose length was 1200
mm, as depicted in Fig. 7(a). A photograph of
one transducer is shown in Figure 7(b). Pairs of
semi-annular cylindrical transducers can be easily
installed on the outer face of a pipe in the
similar way to a device used for bending wave
sensing system (Liu and Lynnworth, 1995).

In Fig. 7(a), the transducer denoted 7T is the
transmitter and the transducers denoted R/ and
R2 are receivers. R/ and R2 were installed,
respectively, and L, from the
transmitter 7. The distances L, and L, were much
smaller than the total length of the pipe. Fig. 8
depicts set-up.

distances L

schematically the experimental

The set-up consisted of a function generator
(Agilent 33120A), a power amplifier (Eliezer HA
400), and a (Tektronix
TDS3032).

Electrical pulse signals produced by the signal

digital oscilloscope

generator and amplified by the power amplifier
were sent to the transducer 7. The transmitting
transducer 7 converted the electrical pulse into
mechanical vibrations, which in turn induced
radial waves that propagated along the pipe's wall.
The receiving transducers Ri and R; detected the
elastic waves and converled the mechanical
vibrations into electric signals. The transmitted

and received signals were sent to the oscilloscope.

(b)

Fig. 7 The arrangement of transducers along a pipe.
(a) the transmitter T and the two receivers
R1 and R2, (b) a photograph of a transducer
installed around a pipe

Funct ion Generator
{hgilent 331208)

|

Power Ampl ifier
(Eliezer HAAOD)

B2 —

SPipe . T

Path 11; vl IPach

Oscil loscope
(Tektronix TOS3032)

Fig. 8 Schematic diagram of the experimental set-up
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We refer to the path of the wave propagation
from T to RI as Path 1 and the path from T to
R2 as Path 2. Paths 1 and 2 had different
lengths.

4.2. Experimental Results
First, experiments were performed in the

empty pipe These
experiments were used to estimate the acoustic

(without any liquid).
distances between the transmitter and the two
receivers. Subsequently, experiments were carried
out in a pipe filled with liquid. The measured
values of the wave speed are compared with the
calculated values.

4.2.1. For the Pipe without Liquid

The phase
propagating in the pipe wall was experimentally

speed of the elastic wave
determined by dividing the distance between
the transmitter and receiver with the time that
clapsed between transmission and reception. The
transducers, however, had a finite width in the
propagation direction and the distance traveled
by the wave was not well defined. To overcome
this problem, we defined the effective distance
by multiplying the measured time-of-flight by
the known wave speed in an empty pipe,

cC =¢" cC, 27

where ¢ is given in eqn. (24). In the above,
¢, is the phase speed of the longitudinal wave in
a thin plate, and its value for aluminum
1100-H14 is 5,417 m/s (Beer and Johnston,
1995). The value of ® needed for the calculation
of ¢, was obtained by analyzing the received
signal. Figure 9 depicts an example of the

frequency spectrum. The center frequency f is 76
kHz and w(=27zf) is 477.5%10° rad/s. The

value of the dimensionless frequency @ is 0.0882

and ®/h = 0.663. Accordingly, ¢ = 0.887, and
the estimated phase speed ¢ = 4806.5 m/s.

o.osFﬁ., . T e

0.02f b

amplitude (V)
T
L

e

.
[ 20 40 60 80 100 120 140 160
frequency (kHz)

0

Fig. © The frequency spectrum of the received signal

Table 1 The dimensions of the pipe and the
material properties of aluminum 1100-H14

Items Values
Pipe geometry Mean radius, R 7.5 mm

Thickness, & 1.0 mm
Material property Mass density, o 2,710 kg/m’

Young's modulus, E 70 Gpa

Shear modulus, G 26 Gpa

Poisson's ratio, v 0.346

(= ERG-1)

5,417 m/s

Longitudinal wave speed in a plate, C,

= E o1-v)?)

The transit time Af¢ was measured by

monitoring the signals of the transmitting
transducer T and the receiving transducers R1 and
R2 as shown in Fig. 10. Figure 10(a) depicts the
waveform of the pulse signal input to the
T. Figs. 10(b) and 10(c) depict,
respectively, the waveforms of the electric signals
detected by the receivers Rl and R2. Witness

that the pulse wave was dispersed during the

transmitter

propagation. The time lapses from the beginning
10(a) to the
beginning of the dispersed pulse in Figs. 10(b)

of the original pulse in Fig.

and 10(c) are the transit times corresponding to
the phase velocity. From the propagation speed
¢ and the propagation time A¢, the effective
distance is:

L =c- 4t (28)
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Table 2 lists the transit time At, the
theoretically calculated speed of the wave ¢, and
the propagation distance ¢ - At for Path 1 and
Path 2. The distances between the two far ends
of the transducers were 205 mm for Path 1 and
316 mm for Path 2, as listed in Table 2. The
shortest distances were 181 mm for Path 1 and

292 mm for Path 2. The calculated distances,

amplitude (V)

amplitude (mV})

s s |
0 50 100 150

amplitude (mV)

-3.0 i i 1 L
0 50 100 150
time {us)

()

Fig. 10 The waveforms of the transmitted and
received signals when the pipe is empty. (a)
the transmitter T, (b) the receiver R1, (c)
the receiver R2

200 mm for Path 1 and 310 mm for Path 2,
fall between the shortest and largest distance
between two adjacent transducers, and are close
to the largest distance. The calculated distances
L, and L, for Path 1 and Path 2, respectively, are
used in the next section to measure the phase
speed of the wave propagating in the pipe when
it is filled with a liquid.

Table 2 The measured propagation time and
propagation distance of each path when
the pipe is empty

Propagation Propagation distance

Wave speed

Path time (mm)
At (us) ¢ (mfs) ¢ At Maximum
1 417 4806.5 200 205
2 64.6 4806.5 310 316

4.2.2. Pipe Filled with Stationary Liquid

The pipe was filled with fresh water at
temperature 20£2C. The mass density of the

water ( o) is 1,000 kg/m’ and the phase speed
of the wave in the water (¢ is 1,481 m/s
(Kinsler et al., 2000). The experimental procedure
was the same as that in the empty pipe.

Fig. 11 depicts the signal's waveforms. The
transit times At were measured between the start
of the transmitted pulse in Fig. 11(a) and the
beginning of the received signal in Fig. 11(b) or
11(c). Dividing the effective propagation distance
L estimated in the previous section with the
measured time A¢ determines the phase speed of
the wave in the liquid-filled pipe.

c = L/At 29

Table 3 Comparison between the measured and calculated wave speeds for each path when the pipe is filled

with stationary water

Path Measured time Propagation distance Wave speed (m/s) Difference
At (ps) L (mm) Measured Calculated (%)
1 40.7 200 4,920.8 4,861.4 12.1
2 63.0 310 4,925.4 4,.861.4 13.0
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The measured values of the phase speed were
summarized in Table 3 and compared with the
theoretical values calculated with eqn. (22) and
eqn. (27). The difference between the measured
and calculated values is less than 13%.

Figure 12 compares the received signals in
the case of the empty pipe (solid line) and the
case of the liquid-filled pipe (dashed line). It
appeared that the phase speed of the wave was
faster in the liquid-filled pipe than in the empty
pipe. This was consistent with the predictions

of Fig. 6. When ®/h ~ 0.887, the phase speed
in the fluid-filled pipe was higher than in the
empty pipe.

amplitude (V)

R - I PRI | i

L
K 100 150
time (ps)

(a)

amplitude (mV)

~3.o: 1 L — L i

amplitude (mV)

100
time (us}

©

Fig. 11 The waveforms of the transmitted and
received signals when the pipe is filled with
water. (a) the transmitter 7, (b) the receiver
R1, (c) the receiver R2

2.0

F T T T
£} ——emply . . .
< filled [ : froree

[ROJ) PG ——

amplitude {mV)

30 40 50 60 70 80

amplitude (mV)

50 60 70 80 90 100
time (us)

b

Fig. 12 Comparison of the received signals when
the pipe is empty and when it is filled with
stationary water. (a) Path 1 and (b) Path 2

5. Conclusion

The effect of a liquid confined in a pipe on
the elastic waves propagating in the pipe wall has
been studied theoretically and experimentally.
The axisymmetric radial motion of the wave has
been modeled by the cylindrical membrane shell
theory taking into account the liquid pressure.
The elastic equation in the solid and the Euler
equation in the fluid were solved simultaneously
to obtain the dispersion relations.

Experiments were performed using
piezoelectric cylindrical transducers to transmit
and receive axisymmetric elastic waves in the
pipe wall. The measured wave speeds were
compared and favorably agree with the calculated
paper
demonstrates the feasibility of using the elastic

ones. The work presented in this

waves for the measurement of the mass density
of a liquid in a pipe.
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