Study on the Developmental Toxicity of Thimerosal

Thimerosal의 발생독성에 관한 연구

  • 곽승준 (국립독성연구원 특수독성부) ;
  • 이규식 (국립독성연구원 특수독성부) ;
  • 김순선 (국립독성연구원 특수독성부) ;
  • 손경희 (국립독성연구원 특수독성부) ;
  • 김소희 (국립독성연구원 특수독성부) ;
  • 채수영 (국립독성연구원 특수독성부) ;
  • 최요우 (국립독성연구원 특수독성부) ;
  • 원용혁 (국립독성연구원 특수독성부) ;
  • 박귀례 (국립독성연구원 특수독성부)
  • Published : 2003.12.01

Abstract

The purpose of our study was to evaluate the toxicity of the thimerosal in embryos and neonates. Thimerosal (also known as mercurothiolate) is a mercury-containing compound used in trace amounts to prevent bacteria and other organisms from contaminating vaccines, especially in opened multi-dose vials. The toxicity of mercury is well known and those most at risk occurrs in unborn babies and newborn babies. Test methods included in vitro whole embryo culture (WEC) system and in vivo test of neonatal toxicity in Wistar rats. Ethylmercury and methylmercury were used as positive controls for the evaluating of toxic effects of mercury. In WEC assay, treated concentrations of thimerosal, ethylmercury and methylmercury were up to 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2.5 and 5 $\mu\textrm{g}$/$\textrm{m}{\ell}$, respectively. All compounds didn't show any morphological abnormalities, but showed retardation of growth and development in dose dependent manner (> 0.5 $\mu\textrm{g}$/$\textrm{m}{\ell}$). These data indicated that thimerosal showed developmental toxicity in vitro. In vivo neonatal toxicity, Wistar rats were administered subcutaneously with thimerosal, ethyl mercury, or methylmercury (5, 25, 50, 250, and 500 $\mu\textrm{g}$/kg) during from postnatal day (PND) 4 to 25. Significant effects of these compounds on relative organ weights and organ morphology were not observed in this experiment. However, accumulation of mercury was detected in the kidney and testis when treated with thimerosal, ethylmercury, or methylmercury. These results suggest that thimerosal may be a harmful compound to embryo and neonate, but used concentration of thimerosal in these experiments is much higher than that of clinical application. Further investigation is needed on the safety of vaccine components, i.e. a thimerosal using in vitro and in vivo tests in the future.

Keywords

References

  1. Abe, T., Haga, T. and Kurokawa, M. (1975): Blockage of axoplasmic transport and depolymerisation of reassembled microtubules by methylmercury. Brain Res., 86, 504-508
  2. Bierman-van Eendenburg, M.E., Jurgens-van der Zee, A.D., Olinga, A.A., Huisjes, H.H. and Touwen, B.C. (1981): Predictive value of neonatal neurological examination: a follow-up study at 18 months. Dev. Med. Child. Neurol., 23, 296-305
  3. Cho, HW., Kim, M.H., Hwang, K.Y. and Yee, S.T. (1997): Detection of mercury in kidney, liver, spleen and cerebellum of the mouse by autometallography. Korean J. Taxicol., 13, 401-408
  4. Danscher, G. (1984): Autometallography: A new technique for light and electron microscopic visualization of metals in biological tissues (gold, silver, metal sulphides and metal selenides). Histachem., 81, 331-335
  5. Danscher, G. (1991): Application of autometallography to heavy metal toxicology. Pharmacol. Taxicol., 68, 414-423
  6. Davidson, P.W., Myers, G.J., Cox, C., Axtell, C., Shamlaye, C., Sloane-Reeves, J., Cernichiari, E., Needham, L., Choi, A., Wang, Y., Berlin, M. and Clarkson, T.W. (1998): Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: outcomes at 66 months of age in the Seychelles Child Development Study. JAMA, 280, 701-707 https://doi.org/10.1001/jama.280.8.701
  7. Elferink, J.G. (1999): Thimerosal: A versatile sulfhydryl reagent, calcium mobilizer, and cell tunction-modulating agent. General Pharmacol., 33, 1-6
  8. Faustman, E.M. (1988): Short-term tests for teratogens. Mutation Res., 205, 355-384
  9. Grandjean, P., Budtz-Jorgensen, E., White, R.F., Jorgensen, P.J., Weihe, P., Debes, F. and Keiding, N. (1999): Methylmercury exposure biomarkers as indicators of neurotoxicity in children aged 7 years. Am. J. Epidemiol., 150, 301-305
  10. Hunter, D, and Russel, D.S. (1954): Focal cerebral and cerebellar atrophy in a human 녀bject due to organic mercury compounds. J. Neurol. Neurasurg. Psychiatry, 17, 235-241
  11. Kinoshita, Y., Ohnishi, A., Kohshi, K. and Yokota, A. (1999): Apparent diffusion coefficient on rat brain and nerves intoxicated with methylmercury. Environm. Res., 80, 348-354
  12. Kitchin, K.T., Schmid, B.P. and Sanyal, M.K. (1981): Teratogenicity of cyclophosphamide in a coupled microsomal activating/embryo culture system. Biachem. Pharmacol., 30, 59-64
  13. Liesegang, R.E. (1911): Die kolloidchemie der histologischen silberfarbungen. In kolloidchemische beihefte (Erganzungshefte zur kolloid-zeifschrift) Ostwald W, ed., Dresden-Leipzig: Verlag von Theodor Steinkopff, 1-44
  14. Liesegang, R.E. and Rieder, W. (1921): Versuche miteiner ‘Keimmethode’ zum nachweis von silber in gewebsschnitten. Z. Wiss. Mikrosk., 38, 334-338
  15. Maele-Fabry, G.V., Delhaise, F. and Picard, J.J. (1990): Morphogenesis and quantification of the development of postimplantation mouse embryos. Taxical. In vitro, 4, 149-156
  16. Miura, K., Inokawa, M. and Imura, N. (1984): Effects of methylmercury and some metal ions on microtubule networks in mouse glioma cells and in vitro tubulin polymerization. Taxicol. Appl. Pharmacol., 73, 218-231
  17. New, D.A. (1978): Whole embryo culture and the study of mammalian embryos during organogenesis. Biol. Rev. Camb. Philos. Soc., 53, 81-122
  18. Orisakwe, O.E, Afonne, O.J., Nwobodo, E, Asomugha, L. and Dioka, C.E (2001): Low-dose mercury induces testicular damage protected by zinc in mice. Eur. J. Obstet. Gynecol. Reprod. BioI., 95, 92-96 https://doi.org/10.1016/S0301-2115(00)00374-2
  19. Pamphlett, R., Ewan, K.B., McQuilty, R. and Waley, P. (1997): Gender differences in the uptake of inorganic mercury by motor neurons. Neurotoxicol. Teratol., 19, 287-293
  20. Roberts, W.J. (1935): A new procedure for detection of gold in animal tissue. Proc. R. Acad., 38, 540-544
  21. Ross, J.F., Switzer, R.C., Poston, M.R. and Lawhorn, G.T. (1996): Distribution of bismuth in the brain after intraperitoneal dosing of bismuth subnitrate in mice; implications for routes of entry of xenobiotic metals into the brain. Brain Res., 725, 137-154
  22. Sadler, T.W. (1980): Effects of maternal diabetes on early embryogenesis: II. Hyperglycemia-induced exencephaly. Teratology, 21, 349-356
  23. Stajich, G.V., Lopez, G.P., Harry, S.W. and Sexson, W.R. (2000): Iatrogenic exposure to mercury after hepatitis B vaccination in preterm infants. J. Pediatr., 136, 679-681 https://doi.org/10.1067/mpd.2000.105133
  24. Steuerwald, U., Weihe, P., Jorgensen, P.J., Bjerve, K., Brock, J., Heinzow, B., Budtz-Jorgensen, E. and Grandjean, P. (2000): Maternal seafood diet, methylmercury exposure, and neonatal neurologic function. J. Pediatr., 136, 599-605
  25. Stoltenberg, M. and Danscher, G. (2000): Histochemical differentiation of autometallographically traceable metals (Au, Ag, Hg, Bi, Zn): Protocols for chemical removal of separate autometallographic metal clusters in Epon sections. Histochemical J., 32, 645-652
  26. Vogel, D.G., Margolis, R.L. and Mottet, N.K. (1985): The effects of methylmercury binding to microtubules. Toxicol. Appl. Pharmacol., 80, 473-486
  27. Yimm, F. (1962): Histochemische lokalisation und nachweis der schwermwtalle. Acta Histochem. (suppl.) , 3, 142-158
  28. Yoshino, Y., Mozai, T. and Nakao, K. (1966): Biochemical changes in the brain in rats poisoned with an alkylmercury compound, with special reference to the inhibition of protein synthesis in brain cortex slices. J. Neurochem., 13, 1223-1230 https://doi.org/10.1111/j.1471-4159.1966.tb04281.x
  29. Zeiger, K. (1938): Physikochemische grundlagen der histologischen methodik. Wiss. Forschungsber, 48, 55-105