Relationship between Singlet Oxygen Formation and Photolysis of Phloxine B in Aqueous Solutions

  • Keum, Young-Soo (Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa) ;
  • Kim, Jeong-Han (School of Agricultural Biotechnology, Seoul National University) ;
  • Li, Qing-Xiao (Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa)
  • Published : 2003.12.01

Abstract

Phloxine B (2,4,5,7-tetrabromo-4,5,6,7-tetrachlorofluorescein disodium salt), also referred as D&C red dye no. 28, is phototoxic to many insects such as Tephritidae fruit flies. Sunlight photolysis of phloxine B in aqueous solutions was a first order kinetic reaction at low concentrations. But it turned to be more complex reactions with the increase of phloxine B concentration. The half-lives of phloxine B (6-120 ${\mu}$M) were 18-41 and 52-289 hours in oxygenated and deaerated distilled water, respectively. The photolysis rate constants increased as the phloxine B concentrations increased. The singlet oxygen formation positively correlated with the concentrations of phloxine B and humic acid in oxygenated distilled water. The formation of singlet oxygen did not stop even after the complete degradation of phloxine B, which suggested an involvement of photoproduct-mediated reactions. The results showed that singlet oxygen mediated photooxidation was a dominant reaction for phloxine B dissipation in an aqueous solution, and the self-sensitized and photoproduct-mediated reactions were also involved at the higher concentrations. Iodide and bromide ions significantly decreased phloxine B photolysis rate constants, which were in relation to the decrease of singlet oxygen formation.

Keywords