Lisophosphatidic Acid Inhibits Melanocyte Proliferation via Cell Cycle Arrest

  • Kim, Dong-Seok (Research Division for Human Life Sciences, Seoul National University) ;
  • Park, Seo-Hyoung (Department of Dermatology, National University College of Medicine) ;
  • Kim, Sung-Eun (Department of Dermatology, National University College of Medicine) ;
  • Kwon, Sun-Bang (Department of Dermatology, National University College of Medicine) ;
  • Park, Eun-Sang (Department of Dermatology, National University College of Medicine) ;
  • Youn, Sang-Woong (Department of Dermatology, National University College of Medicine) ;
  • Park, Kyoung-Chan (Department of Dermatology, National University College of Medicine)
  • 발행 : 2003.11.01

초록

Lysophosphatidic acid (LPA) is a well-known mitogen in various cell types. However, we found that LPA inhibits melanocyte proliferation. Thus, we further investigated the possible signaling pathways involved in melanocyte growth inhibition. We first examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by LPA. The activations of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) were observed in concert with the inhibition of melanocyte proliferation by LPA, whereas p38 MAP kinase and Akt were not influenced by LPA. However, the specific inhibition of the ERK or JNK pathways by PD98059 or D-JNKI1, respectively, did not restore the antiproliferative effect. We next examined changes in the expression of cell cycle related proteins. LPA decreased cyclin $D_1 and cyclin D_2$ levels but increased $p21^{WAF1/CIP1}$ (p21) and $p27^{KIP1}$ (p27) levels, which are known inhibitors of cyclin-dependent kinase. Flow cytometric analysis showed the inhibition of DNA synthesis by a reduction in the S phase and an increase in the $G_0/G_1$ phase of the cell cycle. Our results suggest that LPA induces cell cycle arrest by regulating the expressions of cell cycle related proteins.

키워드

참고문헌

  1. Alblas, J., Slager-Davidov, R., Steenbergh, P. H., Sussenbach, J. S., and van der Burg, B., The role of MAP kinase in TPA-mediated cell cycle arrest of human breast cancer cells. Oncogene, 16, 131-139 (1998) https://doi.org/10.1038/sj.onc.1201485
  2. An, S., Bleu, T., Zheng, Y., and Goetzl, E. J., Recombinant human G protein-coupled lysophosphatidic acid receptors mediate intracellular calcium mobilization. Mol. Pharmacol., 54, 881-888 (1998) https://doi.org/10.1124/mol.54.5.881
  3. Bandoh, K., Aoki, J., Hosono, H., Kobayashi, S., Kobayashi, T., Murakami-Murofushi, K., Tsujimoto, M., Arai, H., and Inoue, K., Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J. Biol. Chem., 274, 27776-27785 (1999) https://doi.org/10.1074/jbc.274.39.27776
  4. Blagosklonny, M. V. and Pardee, A. B., The restriction point of the cell cycle. Cell Cycle, 1, 103-110 (2002)
  5. Blenis, J., Signal transduction via the MAP kinases: proceed at your own RSK. Proc. Natl. Acad. Sci. USA, 90, 5889-5892 (1993) https://doi.org/10.1073/pnas.90.13.5889
  6. Blumer, K. J. and Johnson, G. L., Diversity in function and regulation of MAP kinase pathways. Trends Biochem Sci., 19, 236-240 (1994) https://doi.org/10.1016/0968-0004(94)90147-3
  7. Davis, R. J., The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem., 268, 14553-14556 (1993)
  8. Dooley, T. P., Gadwood, R. C., Kilgore, K., and Thomasco, L. M., Development of an in vitro primary screen for skin depigmentation and antimelanoma agents. Skin Pharmacol., 7, 188-200 (1994) https://doi.org/10.1159/000211294
  9. Douziech, N., Calvo, E., Laine, J., and Morisset, J., Activation of MAP kinases in growth responsive pancreatic cancer cells. Cell Signal, 11, 591-602 (1999) https://doi.org/10.1016/S0898-6568(99)00030-3
  10. Dufourny, B., Alblas, J., van Teeffelen, H. A., van Schaik, F. M., van der Burg, B., Steenbergh, P. H., and Sussenbach, J. S., Mitogenic signaling of insulin-like growth factor I in MCF-7 human breast cancer cells requires phosphatidylinositol 3-kinase and is independent of mitogen-activated protein kinase. J. Biol. Chem., 272, 31163-31171 (1997) https://doi.org/10.1074/jbc.272.49.31163
  11. Fueller, M., Wang de, A., Tigyi, G., and Siess, W., Activation of human monocytic cells by lysophosphatidic acid and sphingosine-1-phosphate. Cell Signal, 15, 367-375 (2003) https://doi.org/10.1016/S0898-6568(02)00117-1
  12. Gartel, A. L. and Tyner, A. L., The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol. Cancer Ther., 1, 639-649 (2002)
  13. Goss, V. L., Cross, J. V., Ma, K., Qian, Y., Mola, P. W., and Templeton, D. J., SAPK/JNK regulates cdc2/cyclin B kinase through phosphorylation and inhibition of cdc25c. Cell Signal, 15, 709-718 (2003) https://doi.org/10.1016/S0898-6568(03)00009-3
  14. Im, D. S., Heise, C. E., Harding, M. A., George, S. R., O'Dowd, B. F., Theodorescu, D., and Lynch, K. R., Molecular cloning and characterization of a lysophosphatidic acid receptor, Edg-7, expressed in prostate. Mol. Pharmacol., 57, 753-759 (2000) https://doi.org/10.1124/mol.57.4.753
  15. Karliner, J. S., Honbo, N., Summers, K., Gray, M. O., and Goetzl, E. J., The lysophospholipids sphingosine-1-phosphate and lysophosphatidic acid enhance survival during hypoxia in neonatal rat cardiac myocytes. J. Mol. Cell Cardiol., 33, 1713-1717 (2001) https://doi.org/10.1006/jmcc.2001.1429
  16. Kiely, P. A., Sant, A., and O'Connor, R., RACK1 is an insulin-like growth factor 1 (IGF-1) receptor-interacting protein that can regulate IGF-1-mediated Akt activation and protection from cell death. J. Biol. Chem., 277, 22581-22589 (2002) https://doi.org/10.1074/jbc.M201758200
  17. Kim, D. S., Kim, S. Y., Kleuser, B., Schafer-Korting, M., Kim, K. H., and Park, K. C., Sphingosine-1-phosphate inhibits human keratinocyte proliferation via Akt/protein kinase B inactivation. Cell Signal, 16, 89-95 (2004) https://doi.org/10.1016/S0898-6568(03)00114-1
  18. Kim, D. S., Kim, S. Y., Moon, S. J., Chung, J. H., Kim, K. H., Cho, K. H., and Park, K. C., Ceramide inhibits cell proliferation through Akt/PKB inactivation and decreases melanin synthesis in Mel-Ab cells. Pigment Cell Res., 14, 110-115 (2001) https://doi.org/10.1034/j.1600-0749.2001.140206.x
  19. Mattingly, R. R., Saini, V., and Macara, I. G., Activation of the Ras-GRF/CDC25Mm exchange factor by lysophosphatidic acid. Cell Signal, 11, 603-610 (1999) https://doi.org/10.1016/S0898-6568(99)00034-0
  20. Pebay, A., Toutant, M., Premont, J., Calvo, C. F., Venance, L., Cordier, J., Glowinski, J., and Tence, M., Sphingosine-1- phosphate induces proliferation of astrocytes: regulation by intracellular signalling cascades. Eur. J. Neurosci., 13, 2067-2076 (2001) https://doi.org/10.1046/j.0953-816x.2001.01585.x
  21. Piazza, G. A., Ritter, J. L., and Baracka, C. A., Lysophosphatidic acid induction of transforming growth factors alpha and beta: modulation of proliferation and differentiation in cultured human keratinocytes and mouse skin. Exp. Cell Res., 216, 51-64 (1995) https://doi.org/10.1006/excr.1995.1007
  22. Prietzsch, H., Brock, J., Kleine, H. D., Liebe, S., and Jaster, R., Interferon-alpha inhibits cell cycle progression by Ba/F3 cells through the antagonisation of interleukin-3 effects on key regulators of G(1)/S transition. Cell Signal, 14, 751-759 (2002) https://doi.org/10.1016/S0898-6568(02)00023-2
  23. Retzer, M. and Essler, M., Lysophosphatidic acid-induced platelet shape change proceeds via Rho/Rho kinasemediated myosin light-chain and moesin phosphorylation. Cell Signal, 12, 645-648 (2000) https://doi.org/10.1016/S0898-6568(00)00108-X
  24. Shida, D., Kitayama, J., Yamaguchi, H., Okaji, Y., Tsuno, N. H., Watanabe, T., Takuwa, Y., and Nagawa, H., Lysophosphatidic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1. Cancer Res., 63, 1706-1711 (2003)
  25. Tang, P. P., Hsieh, S. C., and Wang, F. F., Modulation of caspase activation and p27(Kip1) degradation in the p53-induced apoptosis in IW32 erythroleukemia cells. Cell Signal, 14, 961-968 (2002) https://doi.org/10.1016/S0898-6568(02)00043-8
  26. Tigyi, G., Dyer, D. L., and Miledi, R., Lysophosphatidic acid possesses dual action in cell proliferation. Proc. Natl. Acad. Sci. USA, 91, 1908-1912 (1994) https://doi.org/10.1073/pnas.91.5.1908
  27. Weiss, R. H. and Randour, C. J., The permissive effect of p21(Waf1/Cip1) on DNA synthesis is dependent on cell type: effect is absent in p53-inactive cells. Cell Signal, 12, 413-418 (2000) https://doi.org/10.1016/S0898-6568(00)00081-4
  28. Ye, X., Ishii, I., Kingsbury, M. A., and Chun, J., Lysophosphatidic acid as a novel cell survival/apoptotic factor. Biochim. Biophys. Acta, 1585, 108-113 (2002) https://doi.org/10.1016/S1388-1981(02)00330-X