Antiviral and Tumoricidal Activities of Alginate-Stimulated Macrophages are Mediated by Different Mechanisms

  • Son, Eun-Wha (Korea Institute of Science and Technology Information) ;
  • Rhee, Dong-Kwon (Korea and College of Pharmacy, Sungkyunkwan University) ;
  • Pyo, Suhk-Neung (Korea and College of Pharmacy, Sungkyunkwan University)
  • Published : 2003.11.01

Abstract

Macrophages play an important role in host defenses by killing tumors and virus infections and producing secretory products. High mannuronic acid (HMA) containing alginate was examined to determine the mechanisms by which HMA-activated macrophages resist infection with HSV-1 and inhibit the growth of tumor cells. The ability of macro phages to resist infection with HSV-1 or to inhibit the growth of tumor cells was assessed following treatment with HMA alginate in the presence of either antibodies to various cytokines or inhibitors/scavengers of toxic macrophage products. Only antibodies to IFN-$\alpha$/$\beta$ were able to abrogate the protective effects of HMA alginate in macrophages infected with HSV-1, suggesting that the antiviral activity induced by this immunomodulator was mediated by the production of IFN-$\beta$. In contrast, anti-TNF-$\alpha$, anti-IFN and inhibitors of nitric oxide and reactive oxygen species were all able to partially abrogate HMA-induced cytostatic activity, suggesting that multiple mechanisms are involved in macrophage cytostasis. These results indicate that the HMA-induced intrinsic antiviral and extrinsic cytotoxic activites are mediated by different mechanisms.

Keywords

References

  1. Arden, L., Lansdorp, P., and De Groot, E., A growth factor for B cell hybridomas produced by human monocytes. Lymphokines, 10, 175-185 (1985)
  2. Arenzana-Seisdedos, F. and Virelizier, J., Interferons as macrophage activating factors. II. Enhanced secretion of interleukin 1 by lipopolysaccharide-stimulated human monocytes. Eur. J. Immunol., 13, 437-444 (1983) https://doi.org/10.1002/eji.1830130602
  3. Choriki, M., Freudenberg, M., Calanos, C., Poindron, P., and Bartholeyns, J., Antitumoral effects of lipopolysaccharide, tumor necrosis factor, interferon and activated macrophages: synergism and tissue distribution. Anticancer Res., 9, 1185-1190 (1989)
  4. Cohn, Z. A., Activation of mononuclear phagocytes: fact, fancy, and future. J. Immunol., 121, 813-816 (1978)
  5. Davidson, I. W., Sutherland, Z. W., and Lawson, C. J., Purification and properties of an alginate lyase from a marine bacterium. Biochem. J., 159, 707-713 (1976) https://doi.org/10.1042/bj1590707
  6. Darquy, S. and Sun, A. M., Microencapsulation of parathyroid cells as a bioartificial parathyroid in vitro studies. ASAIO J., 33, 356-358 (1987)
  7. Decker, T., Lohmann-Matthes, M. L., and Gifford, G. E., Cellassociated tumor necrosis factor (TNF) as a killing mechanism of activated cytotoxic macrophages. J. Immunol., 138, 957-962 (1987)
  8. Dinarello, C. A., Interleukin-1. Rev. Infect. Dis., 6, 51-95 (1984) https://doi.org/10.1093/clinids/6.1.51
  9. Ding, A. H., Nathan, C. F., and Stuehr, D. J., Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol., 141, 2407-2412 (1988)
  10. Djeraba, A., Bernardet, N., Dambrine, G., and Quere P., Nitric oxide inhibits Marek's disease virus replication but is not the single decisive factor in interferon-gamma-mediated viral inhibition. Virology, 277, 58-65 (2000) https://doi.org/10.1006/viro.2000.0576
  11. Dullens, H. F. J., De Weger, R. A., Van Der Maas, M., Den Besten, P. J., Vandebriel, R. J., and Den Otter, W., Production of specific macrophage-arming factor precedes cytotoxic T lymphocyte activity in vivo during tumor rejection. Cancer Immunol. Immunother., 30, 28-33 (1989) https://doi.org/10.1007/BF01665027
  12. El Messaoudi, K., Verheyden, A. M., Thiry, L., Fourez, S., Tasiaux, N., Bollen, A., and Moguilevsky, N., Human recombinant myeloperoxidase antiviral activity on cytomegalovirus. J. Med. Virol., 66, 218-223 (2002) https://doi.org/10.1002/jmv.2132
  13. Fan, M. Y., Lum, Z. P., Fu, X. W., Levesque, L., and Tai, I. T., Reversal of diabetes in BB rats in transplantation of encapsulated pancreatic islets. Diabetes, 39, 519-522 (1990) https://doi.org/10.2337/diabetes.39.4.519
  14. Gao, J. J., Filla, M. B., Fultz, M. J., Vogel, S. N., Russell, S. W., and Murphy, W. J., Autocrine/paracrine IFN-$\alpha$/$\beta$ mediates the lipopolysaccharide-induced activation of transcription factor Stat1alpha in mouse macrophages: pivotal role of Stat1alpha in induction of the inducible nitric oxide synthase gene. J. Immunol., 161, 4803-4810 (1998)
  15. Gautam, S. and Deodhar, S., Generation of tumoricidal effector cells by human C-reactive protein and muramyl tripeptide: a comparative study. J. Biol. Res. Modif., 8, 560-569 (1989)
  16. Greene, J. J., Double-stranded RNA and its analogs: The prospects and the promise of the first nucleic acid therapeutic agent: In Strangefellow, D. A., Clinical Applications of Interferon and IFN Inducers. Marcel Dekker, New York, pp. 245-268 (1986)
  17. Hibbs, J. B. Jr., Taintor, R. R., and Vavrin, Z., Macrophage cytotoxicity: role for L-arginine deaminase and imino nitrogen oxidation to nitrite. Science, 235, 473-476 (1987a) https://doi.org/10.1126/science.2432665
  18. Hibbs, J. B. Jr., Vavrin, Z., and Taintor, R. R., L-Arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol., 138, 550-565 (1987b)
  19. Higuchi, M., Higashi, N., Taki, H., and Osawa, T., Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J. Immunol., 144, 1425-1431 (1990)
  20. Iizima-Mizui, N,, Fujihara, M., Himeno, J., Komiyama, K., Umezawa, I., and Namuno T. Antitumor activity of polysacchride fraction from the brown seaweed sargassum kjellmanianum. Kitasato, Arch. Exp. Med., 58, 59-71 (1985)
  21. Keller, R., Keist, R., and Frei, K., Lymphokines and bacteria that induce tumoricidal activity, trigger a different secretory response in macrophages. Eur. J. Immunol., 20, 695-698 (1990) https://doi.org/10.1002/eji.1830200334
  22. Mavier, P. and Edgington, T. S., Human monocyte-mediated tumor cytotoxicity. I. Demonstration of an oxygen-dependent myeloperoxidase-independent mechanism. J. Immunol., 132, 1980-1986 (1984)
  23. Miner, K. M., Klostergaard, J., Granger, G. A., and Nicolson, G. L., Differences in cytotoxic effects of activated murine peritoneal macrophages and J774 monocytic cells on metastatic variants of B16 melanoma. J. Natl. Cancer Inst., 70, 717-724 (1983)
  24. Miner, K. M. and Nicolson, G. L., Differences in the sensitivities of murine metastatic lymphoma/lymphosarcoma variants to macrophage-mediated cytolysis and/or cytostasis. Cancer Res., 43, 2063-2067 (1983)
  25. Morahan, P. S., Interactions of herpesviruses with mononuclear phagocytes. In Rouse, B. T., Lopez, C., Immunobiology of herpes simplex virus infection. CRC Press, Boca Raton, pp. 71-89 (1984)
  26. Morahan, P. S., Connor, J. R., and Leary, K. R., Viruses, and the versatile macrophage. Br. Med. Bull., 41, 15-21 (1985) https://doi.org/10.1093/oxfordjournals.bmb.a072017
  27. Otterle, M., Ostgaard, K., Skjak-Braek, G., Smidsrod, O., and Soon-Shiong, P., Induction of cytokine production from human monocytes stimulated by alginate. J. Immunother., 10, 286-291 (1991) https://doi.org/10.1097/00002371-199108000-00007
  28. Paulnock, D. M. and Lambert, L. E., Identification and characterization of monoclonal antibodies specific for macrophages at intermediate stages in the tumoricidal activation pathway. J. Immunol., 144, 765-773 (1988)
  29. Proietti, E., Gessani, S., Belardelli, F., and Gresser, I., Mouse peritoneal cells confer an antiviral state on mouse cell monolayers: role of interferon. J. Virol., 57, 456-463 (1986)
  30. Pyo, S., Gangemi, J. D., Ghaffar, A., and Mayer, E. P., Poly I:Cinduced anti-herpes simplex virus type 1 activity in inflammatory macrophages is mediated by induction of interferonbeta. J. Leukoc. Biol., 50, 479-487 (1991) https://doi.org/10.1002/jlb.50.5.479
  31. Pyo, S., The mechanism of poly I: C-induced antiviral activity in peritoneal macrophage. Arch. Pharm. Res., 17, 93-99 (1994) https://doi.org/10.1007/BF02974230
  32. Rager-Zisman, B., Kunkel, M., Tanaka, Y., and Bloom, B. R., Role of macrophage oxidative metabolism in resistance to vesicular stomatitis virus infection. Infect. Immun., 36, 1229-1237 (1982)
  33. Remels, L., Fransen, L., Huygen, K., and De Baetselier, P., Poly I:C activated macrophages are tumoricidal for TNF-alpharesistant 3LL tumor cells. J. Immunol., 144, 4477-4486 (1990)
  34. Saiki, I. and Fidler, I. J., Synergistic activation of recombinant mouse interferon-and muramyl dipeptide of tumoricidal properties in mouse peritoneal macrophages. J. Immunol., 135, 684-688 (1984)
  35. Seljelid, R., Figenschau, Y., Bogwald, J., Rasmussen, L. T., and Austgulen, R., Evidence that tumor necrosis induced by aminated beta 1-3D polyglucose is mediated by a concerted action of local and systemic cytokines. Scand. J. Immunol., 30, 687-694 (1989) https://doi.org/10.1111/j.1365-3083.1989.tb02477.x
  36. Sharon, N., Shoham, J., and Passwell, J. H., Enhancement of human monocyte cytotoxicity by both interferon-gamma and -beta and comparison to other stimuli. Int. J. Immunopharmacol., 11, 743-749 (1989) https://doi.org/10.1016/0192-0561(89)90128-8
  37. Sit, M. F., Tenney, D. J., Rothstein, J. L., and Morahan, P. S., Effect of macrophage activation on resistance of mouse peritoneal macrophages to infection with herpes simplex virus types 1 and 2. J. Gen. Virol., 69, 1999-2010 (1988) https://doi.org/10.1099/0022-1317-69-8-1999
  38. Son, E. H., Moon, E. Y., Rhee, D. K., and Pyo, S., Stimulation of various functions in murine peritoneal macrophages by high mannuronic acid-containing alginate (HMA) exposure in vivo. Int. Immunopharmacol., 1, 147-154 (2001) https://doi.org/10.1016/S1567-5769(00)00012-6
  39. Soon-Shiong, P., Henitz, R. E., Merideth, N., Yao, Q. X., and Zheng, T., Insulin independence in a type I diabetic patient after encapsulated islet transplantation. Lancet, 343, 950-951 (1994) https://doi.org/10.1016/S0140-6736(94)90067-1
  40. Stuehr, D. J. and Marletta, M. A., Synthesis of nitrite and nitrate in macrophage cell lines. Cancer Res., 47, 5590-5594 (1987)
  41. Takahashi, K., Watanuki, Y., Yamazaki, M., and Abe, S., Local induction of a cytotoxic factor in a murine tumor by systemic administration of an antitumor polysaccharide, MGA. Br. J. Cancer., 57, 170-173 (1988) https://doi.org/10.1038/bjc.1988.35
  42. Tze, W. J. and Tai, J. Biocompatibility and immunological studies of microencapsulation with cross-linked alginate capsules. Transplantation, 33, 563-564 (1982) https://doi.org/10.1097/00007890-198205000-00022
  43. Tsujimoto, M., Feinman, R., and Vilcek, J., Differential effects of type I IFN and IFN-gamma on the binding of tumor necrosis factor to receptors in two human cell lines. J. Immunol., 137, 2272-2276 (1986)
  44. Verstovsek, S., Maccubbin, D., and Mihich, E., Tumoricidal activation of murine resident peritoneal macrophage by interleukin 2 and tumor necrosis factor. Cancer Res., 52, 3880-3885 (1992)
  45. Wong, G. H. and Goeddel, D. V., Tumour necrosis factors alpha and beta inhibit virus replication and synergize with interferons. Nature, 323, 819-822 (1986) https://doi.org/10.1038/323819a0