Differential Effects of Typical and Atypical Neuroleptics on Mitochondrial Function In Vitro

  • Josephine, S. (Merrimack College, Department of Biology) ;
  • Napolitano, Modica (Merrimack College, Department of Biology) ;
  • Lagace, Christopher-J. (Tufts University School of Medicine) ;
  • Brennan, William-A. (Augusta Mental Health Institute) ;
  • Aprille, June-R. (University of Richmond, Department of Biology)
  • Published : 2003.11.01

Abstract

A series of typical (chlorpromazine, haloperidol and thioridazine) and atypical (risperidone, quetiapine, clozapine and olanzapine) antipsychotics were tested for effects on integrated bioenergetic functions of isolated rat liver mitochondria. Polarographic measurement of oxygen consumption in freshly isolated mitochondria showed that electron transfer activity at respiratory complex I is inhibited by chlorpromazine, haloperidol, risperidone, and quetiapine, but not by clozapine, olanzapine, or thioridazine. Chlorpromazine and thioridazine act as modest uncouplers of oxidative phosphorylation. The typical neuroleptics inhibited NADH-coenzyme Q reductase in freeze-thawed mitochondria, which is a direct measure of complex I enzyme activity. The inhibition of NADH-coenzyme Q reductase activity by the atypicals risperidone and quetiapine was 2-4 fold less than that for the typical neuroleptics. Clozapine and olanzapine had only slight effects on NADH-coenzyme Q reductase activity, even at 200 $\mu$ M. The relative potencies of these neuroleptic drugs as inhibitors of mitochondrial bioenergetic function is similar to their relative potencies as risk factors in the reported incidence of extrapyramidal symptoms, including tardive dyskinesia (TD). This suggests that compromised bioenergetic function may be involved in the cellular pathology underlying TD.

Keywords

References

  1. Andreassen, O. A. and Jorgensen, H. A., The mitochondrial toxin 3-nitropropionic acid induces vacuous chewing movements in rats. Implications for tardive dyskinesia? Psychopharmacol., 119, 474-476 (1995) https://doi.org/10.1007/BF02245864
  2. Andreassen, O. A. and Jorgensen, H. A., Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats: Implications for tardive dyskinesia. Prog. Neurobiology, 61, 525-541 (2000) https://doi.org/10.1016/S0301-0082(99)00064-7
  3. Balijepalli, S., Boyd, M. R., and Ravindranath, V., Inhibition of mitochondrial complex I by haloperidol: the role of thiol oxidation. Neuropharmacology, 38, 567-577 (1999) https://doi.org/10.1016/S0028-3908(98)00215-9
  4. Beal, M. F., Hyman, B.T., and Koroshetz, W., Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci., 16, 125-131 (1993) https://doi.org/10.1016/0166-2236(93)90117-5
  5. Beal, M. F., Aging, energy and oxidative stress in neurode-generative diseases. Ann. Neurol., 38, 357-3661 (1995) https://doi.org/10.1002/ana.410380304
  6. Beasley, C. M., Jr., Hamilton, S. H., Crawford, A. M., Dellva, M. A., Tollefson, G. D., Tran, P. V., Blin, O., and Beuzen, J. N., Olanzapine versus haloperidol: acute phase results of the international double-blind olanzapine trial. Eur. Neuropsycho-pharmacol., 7, 125-137 (1997) https://doi.org/10.1016/S0924-977X(96)00392-6
  7. Burkhardt, C., Kelly, J. P., Lim, Y-H., Filley, C. M., and Parker, W. D., Jr., Neuroleptic medications inhibit complex I of the electron transport chain. Ann. Neurol., 33, 512-517 (1993) https://doi.org/10.1002/ana.410330516
  8. Byczkowski, J. Z. and Borysewicz, R., The action of chlorpromazine and imipramine on rat brain mitochondria. Gen. Pharmac., 10, 369-372 (1979) https://doi.org/10.1016/0306-3623(79)90072-7
  9. Casey, D. E., Extrapyramidal syndromes and new antipsychotic drugs: findings in patients and non-human primate models. Br. J. Psychiatry Suppl., 168(29), 32-39 (1996)
  10. Chouinard, G., Ross-Chouinard, A., Annable, L., and Jones, B. D., The extrapyramidal symptom rating scale. Can. J. Neurol. Sci., 7, 233 (1980)
  11. Gallagher, C. H., Koch, J. H., and Mann, D. M., The effect of phenothiazine on the metabolism of rat liver mitochondria. Biochem. Pharmacol., 10, 369-372 (1965)
  12. Glazer, W. M., Extrapyramidal side effects, tardive dyskinesia, and the concept of atypicality. J. Clin. Psychiatry, 61[suppl 3], 16-21 (2000) https://doi.org/10.4088/JCP.v61n0105
  13. Goff, D. C., Tsai, G., Beal, M. F., and Coyle, J. T., Tardive dyskinesia and substrates of energy metabolism in CSF. Am. J. Psychiatr., 152, 1730-1736 (1995) https://doi.org/10.1176/ajp.152.12.1730
  14. Green, D. R. and Reed, J. C., Mitochondria and apoptosis [Review]. Science, 281, 1309-1312 (1998) https://doi.org/10.1126/science.281.5381.1309
  15. Grenell, R. G., Mendelson, J., and McElroy, W. D., Effects of chlorpromazine on metabolism in central nervous system. AMA Arch. Neurol. Psychiat., 73, 347-351 (1955) https://doi.org/10.1001/archneurpsyc.1955.02330090093014
  16. Guth, P. S. and Spirtes, M. A., The phenothiazine tranquilizers: biochemical and biophysical actions. Int. Rev. Neurobio. l 7, 231-278 (1964) https://doi.org/10.1016/S0074-7742(08)60269-X
  17. Jeste, D. V., Lacro, J. P., Bailey, A., Rockwell, E., Harris, M. J., and Caligiuri, M. P., Lower incidence of tardive dyskinesia with risperidone compared with haloperidol in older patients. J. Am. Geriatr. Soc., 47(6), 716-719 (1999) https://doi.org/10.1111/j.1532-5415.1999.tb01595.x
  18. Lemmens, P., Breecher, M., and Van Baelen, B. A., Combined analysis of double-blind studies with risperidone vs. placebo and other antipsychotic agents: factors associated with extrapyramidal symptoms. Acta Psychiatr. Scand., 99(3), 160-170 (1999) https://doi.org/10.1111/j.1600-0447.1999.tb00972.x
  19. Loft, S., Astrup, A., Buemann, B., and Poulsen, H. E., Oxidative DNA damage correlated with oxygen consumption in humans. FASEB J., 8, 534-537 (1994) https://doi.org/10.1096/fasebj.8.8.8181672
  20. Maurer, I. and Molle, H-J., Inhibition of complex I by neuroleptics in normal human brain cortex parallels the extrapyramidal toxicity of neuroleptics. Mol. Cell Biochem., 174, 255-259 (1998) https://doi.org/10.1023/A:1006872911332
  21. Mitchell, I. J., Crossman, A. R., Liminga, U., Andren, P., and Gunne, L. M., Regional changes in 2-deoxyglucose uptake associated with neuroleptic-induced tardive dyskinesia in the cebus monkey. Mov. Disord., 7, 32-37 (1992)
  22. Modica-Napolitano, J. S., Joyal, J. L. , Ara, G., Oseroff, A. R., and Aprille, J. R., Mitochondrial toxicity of cationic photosensitizers for photochemotherapy. Cancer Res., 50, 7876-7881 (1990)
  23. Prince, J. A., Yassin, M. S., and Oreland, L., Neurolepticinduced mitochondrial enzyme alterations in rat brain. J. Pharmacol. Exptl. Therapeut., 280, 261-267 (1997)
  24. Rand, D. M., Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends Ecol. Evol., 9, 125-131 (1994) https://doi.org/10.1016/0169-5347(94)90176-7
  25. Roberts, R. C., Gaither, L. A., Gao, X-M., Kashyap, S. M., and Tammainga, C. A., Ultrastructural correlates of haloperidolinduced oral dyskinesis in rat striatum. Synapse, 20, 234-243 (1995) https://doi.org/10.1002/syn.890200307
  26. Schapira, A. H. V., Evidence for mitochondrial dysfunction in Parkinsons Disease - a critical appraisal. Mov. Disord., 9, 125-138 (1998)
  27. Schillevoort, I., de Boer, A., Herings, R. M., Roos, R. A., Jansen, P. A., and Leufkens, H. G., Risk of extrapyramidal syndromes with haloperidol, risperidone, or olanzapine. Ann. Pharmacother., 35, 1517-22 (2001) https://doi.org/10.1345/aph.1A068
  28. Sussman, N., Choosing an atypical antipsychotic. Int. Clin. Psychopharmacol., 17(3), 29-33 (2002)
  29. Tarsy, D. and Baldessarini, R. J., Tardive Dyskinesia. Ann. Rev. Med., 35, 605-623 (1984) https://doi.org/10.1146/annurev.me.35.020184.003133
  30. Tarsy, D., Baldessarini, R. J., and Tarazi, F. I., Effects of newer antipsychotics on extrapyramidal function. CNS Drugs, 16, 23-45 (2002) https://doi.org/10.2165/00023210-200216010-00003