Phosphate Fertilizer Influences Growth and Photosynthesis of Pepper Seedlings

인산시비가 고추 플러그묘의 생장과 광합성에 미치는 영향

  • Published : 2003.03.01

Abstract

Seedlings of ‘Nokgwang’ and ‘Kwari’ green pepper were cultured in 32-cell plug trays in TK$_2$ medium to find out optimal concentrations of phosphate. Seedling growth of both ‘Nokgwang’ and ‘Kwari’ cultivars was affected by phosphate strength. Applying P fertilizer to the plug system caused a marked increase in plant height and leaf area at 1.0 phosphate strength. On the other hand, total dry weight increased with increasing phosphate strength. Higher chlorophyll content was observed in ‘Nokgwang’ than ‘Kwari’ in all treatments. Phosphate strength greater than 0.5 gave similar chlorophyll content. Photosynthetic rate was higher for plants fertilized with 1.0 strength for ‘Nokgwang’ and 0.5 strength for ‘Kwari’than the other treatments. Higher concentrations of phosphate reduced photosynthesis in both cultivars. With ‘Nokgwang’increasing concentration of phosphate up to 1.0 strength resulted in increase in stomatal conductance and transpiration rate.

풋고추 플러그 육묘시에 인산의 최적 시비농도를 구명하기 위하여 32구 플러그 트레이에 TK2를 채워서 종자를 파종한 다음 인산을 농도별로 처리하여 식물체의 생육과 광합성에 미치는 효과를 조사하였다. ‘녹광’과 ‘꽈리’ 두 품종의 생장은 표준 농도인 1.0배로 처리하였을 때에 엽면적과 초장의 생장이 가장 촉진 되었으며, 1.5배 이상의 농도에서는 농도가 높을수록 생육이 억제되었다. 반면 식물체의 총 건물중은 인산의 농도가 증가할수록 무거웠다. 엽록소의 함량은 ‘꽈리’ 보다 ‘녹광’이 더 높았는데, 0.5배 이상의 농도에서는 농도간의 차이가 없었다. 광합성율은‘녹광’의 경우에는 1.0배, ‘꽈리’의 경우에는 0.5배의 농도로 시비하였을 때에 가장 높았으며, 식물체의 생장과 마찬가지로 고 농도의 인산시비는 두 품종 모두 광합성을 억제시켰다. 기공전도도와 수분증발율은 ‘녹광’의 경우에는 1.9배까지 인산의 농도를 높일수록 증가하였으나, 1.0배 이상의 고농도에서는 감소하였다.

Keywords

References

  1. Austin, R.B., C.I, Morgan, M.A. Ford, and S.G. Bhagwat. 1982. Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species. Ann. Bot. 49:177-189 https://doi.org/10.1093/oxfordjournals.aob.a086238
  2. Barker, N.R. and K. Hardwick. 1973. Biochemical and physiological aspects of photosynthetic units in cocoa(Theobroma cacoa). III. Development of chlorophyll and photosynthetic acitivty. New Phytol. 72:1315-1324 https://doi.org/10.1111/j.1469-8137.1973.tb02109.x
  3. Caradus, J.R. 1990. Mechanisms improving nutrient use by crop and herbage legumes. In: Crops as enhancers of nutrient use. V.C. Baligar and R.R. Duncan. (eds.) pp. 253-209. Academic Press, Inc., San Diego, CA
  4. Dale, J.E. 1972. Growth and photosynthesis in the first leaf of barley. The effect of time application of nitrogen. Ann. Bot. 36:967-979 https://doi.org/10.1093/oxfordjournals.aob.a084658
  5. Hopkinson, J.M. 1964. Studies on the expansion of the leaf surface. IV. The carbon and phosphorus economy of a leaf. J. Exp. Bot. 15:125-137 https://doi.org/10.1093/jxb/15.1.125
  6. Ottosen, C.O., A. Anderson, and O.V. Christensen. 1989. Clonal variation of net photosynthetic rate of Ficus benzamina L. in relation to height growth. Gartenbauwissenschaft 54:208-211
  7. Treharne, K.J., J.P. Cooper, and T.H. Taylor. 1968. Growth response of orchard-grass (Dactylis glomerataL.) to different light and temperature environments. II. Leaf age and photosynthetic activity. Crop Sci. 8:441-445 https://doi.org/10.2135/cropsci1968.0011183X000800040014x
  8. Valanne, N., T. Valanne, H. Niemi, and E.M. Aro. 1981. The development of the photosynthetic appara-tus during leaf opening in silver birth (Betula pendula Roth.). In: Photosynthesis. Vol. V. The development of the photosynthetic apparatus during leaf opening in sil-ver birch (Betula pendula Roth.). G. Akoyunoglou. (ed.) pp. 397-406. Balaban Int. Sci. Serv., Philadelphia
  9. Zelitch, I. 1982. The close relationship between net photosynthesis and crop yield. BioScience 32:796-802 https://doi.org/10.2307/1308973