Abstract
The objective of the present work is to examine the variation of cooling characteristics due to the Weber number of droplet on a heated surface. The surface temperatures varied from 72.5 - $106.1^{\circ}C$ on steel and Teflon, when Weber number was 60, 180, 300. The results are as follows; In the case of the same droplet size, the initial temperature of solid increases the indepth temperature of solid more drop. In the case of the same surface temperature, Weber number increases with increasing the cooling effect of droplet. The time-average heat flux increases with increasing the initial temperature of solid and Weber number. The evaporation time decreases with increasing the initial temperature of solid and Weber number.