International Journal of KIMICS, Vol. 1, No. 3, September 2003

143

A Study on the XML-based Dynamic Search Engine
for Internet Information Retrieval

Yang-Weon Lee, Member, KIMICS

Abstract—In this study, a new-concept search agent
system for the WWW by using XML-based technology
is proposed. The implementation of the prototype of this
proposed system, the comparison with traditional search
engines, and the evaluation of the prototype system are
also

Index Terms—XML, Intemet, Search Engine, Database

I. INTRODUCTION

Recent developments of the WWW have changed the
paradigm of information retrieval because those developments
have explosively increased the total amount of information
available on the Internet. People looking for specific data
on the Internet face a more difficult task because as the
total amount of information increases on the WWW.

In general, most of search engines can be classified into
two types: Categorized Directory and Free-text Keyword
search. Nowadays, there are few directory-only search
engines: most categorized directory search engines also
support keyword search. One of common features of these
two-type engines is a centralized system with a large
database in order to store categorized directory information
and/or indexed keywords.

Free-text search engines mainly have three problems.
First, those engines often provide tons of garbage search
results because the engines cannot distinguish the categories
to which the search keywords belong.

Second, those engines could provide out-of date information,
dead links, and already disappeared contents because the
data in the database is what agents collected in the past.
Thus, some information might have been already expired
and/or been deleted.

Third, those engines have scalability problems inherent
in their systems. As amount of information increases, the
centralized database systems cannot be expanded, and data
collecting agents cannot collect data within a feasible
period of time. Moreover, it is also expensive to maintain
a complicated data structure and huge centralized database
system.

The major problems of current search engines are garbage
hits, out-of date information, dead links, and a huge
centralized database. Potential solutions consist of two
aspects. One is a dynamic searching approach instead of
searching data from database created in advance. In this

Manuscript received July 20, 2003 .

Yang-Weon Lee, Department of Information and Communication
Eng., Honam University, 59-1, Gwangsangu, Gwangju, Korea
(Phone: 062-940-5572, Fax: 062-945-9030, E-mail: ywlee@honam.ac.kr)

sense, we develop the kind of “agents”, which searches
the information on behalf of users. So, In order to improve
and solve the problems of current search engines, the
proposed system should contain two important concepts,
“XML-Based Search” and “Dynamic contents retricval”.

. XML-BASED DYNAMIC SEARCH AGENTS

A solution system for the problems needs to have two
key concepts: one is XML-based, the other is dynamic
contents retrieval. In this section, we develop the basic
structure by comparison of various architectures. In this
paper, four potential agent models are considered and
discussed. The agent is introduced and analysis of its
strength and weakness is presented in the following
section. The four models are compared and one of them
is chosen to implement the developed system.

A. Client-side agent model

Figure 1 is the diagram of the client-side agent model
which an agent program runs on each client machine,
establishing http connections to the start page, following
hyperlinks, and searching XML documents that match
the user's specified search condition. The strength of this
model is that each agent program will be easily customized
for each user. But network bandwidth might not always
be sufficient. So the performance will be slow due to
many http connections between clients and the web
servers. In addition, users must install the agent program
into their machines, set up program configurations, and
sometimes may need to update it to the latest version.

ALEE 01 X1

iy

Gty

T
i
Modem Hub

[

user client user client XML

o

[
[
]

B. Server-side agent model

Figure 2 is the diagram of the server-side agent model
which the agent gets search conditions from user clients,
establishes http connections, follows hyperlinks, searches
XML documents, and finally sends the search results back
to the user clients. Differing from the client-side agent
model, most of the HTTP connections are established

144 Yang-Weon Lee : A Study on the XML-based Dynamic Search Engine for Internet Information Retrieval

between the agent server and the target web site. Only
queries and search results are transmitted via the slower
links between the agent server and the user clients. Since
the agent server connects to the Internet via always-on
and wide-bandwidth networks, search performance can
be much better than the client-side agent model. The
weakness of this model is the concentration of access
from many clients.

Search Agent serv
Serviet

Jsp AR HIOIXI

L

Appache HTTPd

.

G

2 =
==

userciient user client XML

C. Distributed agent model

Figure 3 is the diagram of the distributed agent model
which the agent server is deployed and installed to every
target website. Similar to the server-side agent model,
search queries and search results are only transmitted via

slower links between the agent server and the user clients.

In addition, since there are only query requests and
search responses being transmitted via the Internet,
network traffic can be reduced to a very low level.
Search time can also be reduced because the distributed
servers can search simultaneously, and the searching is
performed on local hard drives or LAN that tends to have
smaller latency. The weakness is that this model has
expensive costs because each web site needs to install
the agent server.

D. Peer-to-Peer agent model
Figure 4 is the diagram of the peer-to-peer agent model
which the centralized server manages and provides the

information of files located in different distributed server.

Recently, free-text search engines have faced several
problems such as scalability, efficiency, and data freshness
problem. Therefore, peer-to-peer based search model has
attracted researchers' attention to be a solution to the
limitations of current search engine system.

XML

‘ [} [-J
0
[res ™

Internet

=[N
o
N

userclient user dlient q i1 k)
= o Kt [
D
s ™ i

Fig. 3 Distributed agent model

E. Recommended model

Among four proposed models, the recommended
model is server-side agent model because the model has
strength in both the performance and the feasibility. the
following table shows the comparisons among the four
models in terms of performance, cost, network usage,
and maintenance.

Table 1 Comparison among the four models

o | Server side | Distributed | Peer-to-Peer
Performance Poor Good Best Better
Cost - Best Better Poor Good
Network usage Poor Good Best Poor
Maintenance Poor Good Poor Poor
III. IMPLEMENTATION

In this section, first, the system design concepts are
stated. Second, several packages used by the proposed
program are explained in detail. Third, the detailed
implementation skills and system algorithm are both
described and illustrated for clarification.

A. System design

In order to facilitate the uses of the system, N-tier
architecture is applied on the proposed system. Client
side users use web browsers to communicate with it,
Nowadays, web browser is a very common application
and built in most popular operating systems. In figure 1,
model manages the behavior and data of the application
domain, responds to requests for information about its
state, and responds to instructions to change state. View
manages the graphical and/or textual outputs of the
application. Controller interprets the mouse and keyboard
inputs from the user, commanding the model and/or the
view to change as appropriate. The MVC(Model/View/
Controller) behavior is necessary to provide a flexible
and powerful system.

As illustrated in figure 2, the system architecture of
proposed system has followed the MVC model.
“XMLRetriever” and “ShowMatch” are the Java Servlet
program which are responsible for receiving the requests
from the clients (Controller). All the classes under agent
program and the agent program itself are the Java
program that take responsibility for retrieving the data
from the web site(Model). At last, all the search results
will be forwarded to JSP(view) for representing.

tagm———{ '] Controller -
'JJJ (Serviet) |-maee| | | Modle |
t

<] Receive Reques | (Bean) "
- T e P | Crawler |
L —— — Refrieve-
Browser | = |
i I /\}Iew Foward
| T (JSP) _—
Resporse—-—-— Lj Present Result
Web_Sewer Data source
(Application Server) (Web site)

Fig. 4 MVC design paradigm

International Journal of KIMICS, Vol. 1, No. 3, September 2003

145

e

Client |

Serviet

Fig. 5 System architecture

The agent program is multi-threaded to improve the
system performance. If the agent visits a web page, it
finds the links inside the web page and then visits them
one by one. This algorithm is not efficient. It can be
improved by using the multi-thread programming as
illustrated in Figure 3. If there are many agents visiting all
the links simultaneously, for example, if one agent found
five links, then it will create another five agents visiting
these five links simultaneously. Retrieving the documents
simultaneously could benefit the system performance.

B. Flowchart of the algorithm

In order to clarify the algorithm of the agent program,
these flowcharts describe some major classed within the
agent program. In the case of controller(Fig. 7), first it
reads the initial parameters from configuration files and
waits for the inputs from the clients. Once the controller
receives the request form the clients, it will generate the
XML query strings and hand it to the agent program, the
crawler as “MODEL” in fig. 4, then when the agent program
finish crawling, the controller gets the search results from
the agent program and puts them into JSP files for presenting.

T a=wmox A= EOK

Depth-First Search

Fig.6 Multi-threaded agent program

Controller ™,
(XML retriver) _/
ML retriver)

S

| Initialize

\ Invoke Agent J

- /$\\
YES -l iferror e sy O
| N s s
| .
B f,l]
\ [‘
error jsp ‘ | resultjsp |
I
|
v

i Terminate

Fig.7 Flowchart of controller program

In the case of model(Fig.5), the agent program)(crawler)
receives the XML query strings from the controller and
initialization itself. Then it will invoke threads to find
more HTML hyperlinks or XML documents. All these
links will be put in a queue. The agent program will be
terminated only if there are no more threads working and
the waiting queue is empty. Figure 6 show the simple
algorithm of the threads contained in the agent program.
Basically, the Worker threads is used to parse the XML
documents and run the XQL Engine to generate the
search results. It deserves to be mentioned that all the
links will be examined only if they are under the same
domain. This idea is applied in order to avoid endless
linkage which can often occurs because all the web
pages are all hyper-linked with each other as a net.

IV. EXPERIMENTS

A. Specification of the experimental system environment

The following table shows the specification of the
experimental system environment the agent server and
the proxy cache server.

Model
(Agent)
Y
Initialize
|
- * -
- coﬁzter::(ms - = resultSet
1 ! infovr‘ylelete v
! Check Max Terminate
l sleep = - T connections
Not Max
[
? Spawn thread
i 4
‘ cﬁeck fu‘l‘e
‘\ l extension .
\ | i
} v v
| HTML | XML
i i
Fig.8 Flowchart of model program
Thread
(XML Worker)
Parse " Thread
Document (Worker) //
77w;(QLE . " Parse
ngine Document
Search Result Find links ‘

l l
O
Fig. 9 Flowchart of model program

146 Yang-Weon Lee : A Study on the XML-based Dynamic Search Engine for Internet Information Retrieval

Table 2 Hardware specifications

Agent server | Proxy cache server
CPU Pentium IV Pentium [V
RAM 128Mb 256 Mb
Network I/F 10Base T 10Base T
Operating windows 2000 windows 2000
System B

B. Performance

We present the results of three test cases that illustrate
the performance. The first case was a repository created
inside the same network. Therefore, the target website and
the agent server were connected by Ethernet, 10Mbps. The
contents of the repository were small HTML files and
XML files, less than 4Kbytes each. The second case was
a real XML repository (http://www.honam.ac.kr/), which
has the conclusive resource for University Markup Language
which is used to exchange school information and data
via the Interet. The third case was also a real-world case:
the Honam library Metadata site (http:/library honam.ac kr/)
which is a specification for describing library materials.

Table 3 shows the search time for the cases mentioned
above. The search time results clearly depend on erogenous
variables like network conditions, PC hardware specifications,
and load status. In order to eliminate at least some variation
in these factors, we tested each case five times, and present
the mean values in Table 3.

Table 3 Comparison among experiment cases
Local

X Hopam |
experimental |y . ersity
Environment L :
Number /
Average size of |16 / 458 [bytes] 1[/b104?0 34é 16966
HTML ytes [bytes]
Avgzrg“ebseirzg of| 1672756 | 173710314 | 27/974
vy [bytes] [bytes] [bytes]
Direct access 2545[ms} 19291[ms] 44637[ms]
Via cache server| 1772[ms] 14577[ms] 40305[ms]
Ratio of
(w/ Cache) / 0.696 0.756 0.903
(w/o Cache)

V. CONCLUSION AND FUTURE RESEARCH

In this paper we analyze possible search mechanisms
for large XML repositories, and present a dynamic search
agent. We describe its functionality and its architecture,
analyze its performance and compare it to other search
mechanisms. For future work, we plan on a) expanding agent
program to search multiple repositories in parallel, and
collate the results, b) explore a peer-to-peer architecture
for agent program, wherein each repository would host
its own agent and c) explore new ways to improve the
performance of agent program.

REFERENCES

[1] R. Khare and A. Rifkin, “XML: A door to automated
web applications”, IEEE Internet Computing, vol. 1,
pp. 78-87, 1997.

[2] T. Berners-Lee, J. Hendler, and O. Lassila, “The
Semantic Web”, in Scientific American, vol. September,
2001.

[3] N.J. Belkin and W. B. Croft, “Retrieval Techniques”,
Annual Review of Information Science and Technology,
vol. 22, pp. 109-145, 1987.

[4] D. Billsus and M. Pazzani, “Learning Collaborative
Information Filters”, presented at Machine Learning:
Proceedings of the Fifteenth International Conference,
1998.

{5] B.B. Anderson, A. Bajaj, and W. Gorr, “An Estimation
of the Relative Effects of External Software Quality
Factors on Senior IS Managers' Evaluation of
Computing Architectures”, Journal of Systems and
Software, To Appear.

[6] F. Menczer, “Life-like agents: Internalizing local
cues for reinforcement learning and evolution”, in
Computer Science and Engineering. San Diego:
University of California, 1998.

[7]1 K. Sripanidkulchai, “The popularity of Gnutella
queries and its implications on scalability”, White
Paper, SCS, Carnegie Mellon University, Pittsburgh,
2001.

[8] M. Foley and M. McCulley, JFC Unleashed: SAMS
Publishing, 1998.

Yang-Weon Lee
He Received B.S degree in the
Department of Electrical Engineering
from Chungang University, Korea,
in 1982, and the M.S. degree in the
Department of Control and Measurement
Engineering from Seoul National
; University, in 1991. In 1998, he received
Ph. D. degrees in the Department of Electrical Engineering
from Pohang University of Science and Technology
(POSTECH), Korea. During 1982-1996, he worked for
Agency for Defense Development as senior researcher.
Since 1996, he has worked in the Department of
Information and Communication Engineering at the
Honam University, where he now works as a associate
professor. His current research interests include radar
signal processing, target estimation and tracking filter
design, communication signal processing, distance education
using satellite and its Internet application.

