Photobioreactor Engineering: Design and Performance

  • Suh, In-Soo (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University) ;
  • Lee, Choul-Gyun (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
  • Published : 2003.12.01

Abstract

This review summarizes the recent advances in high-density algal cultures in the field of algal biotechnology. Photobioreactor engineering for economical and effective utilization of algae and its products has made impressive and promising progress. Bioprocess engineers have expedited the design and the operation of algal cultivation systems. Many of them in use today are open systems due to cost considerations, and closed photobioreactors have recently attracted a considerable attention for the production of valuable biochemicals or for special applications. For high-density cultures, the optimization of environmental factors in the photobioreactors have been explored, including light delivery, CO$_2$and O$_2$gas transfer, medium supply, mixing and temperature. It is expected that further advanced photobioreactor engineering will enable the commercialization of noble algal products within the next decade.

Keywords

References

  1. Enzyem Microb. Technol v.8 Biologically active compounds from microalgae Metting,B.;J.W.Pyne https://doi.org/10.1016/0141-0229(86)90144-4
  2. Secondary metabolites of pharmaceutical potential;Longman Scientific & Technical Alga! and Cyanobacterial Biotechnology Glombitza,K.W.;M.KochlR.C.Cresswell(ed.);T.A.V.Rees(ed.);H.Shah(ed.)
  3. Pestic. Sci. v.39 Algae as a source of biologically active products Cannell,R.J.P. https://doi.org/10.1002/ps.2780390208
  4. Adv. Space Res. v.12 Design and operation of an algal photobioreactor system Javanmardian,M.;B.O.Palsson
  5. J. Ferment. Bioeng. v.79 Light emitting diodebased algal photobioreactor with external gas exchange Lee,C.G.;B.O.Palsson https://doi.org/10.1016/0922-338X(95)90613-5
  6. Microalgal Biotechnology Borowitzka,M.A.;L.J.Borowitzka
  7. J. Microbiol. Biotechnol v.12 Nitrogen removal from wastewaters by microalgae without consuming organic carbon sources Lee,K.;C.G.Lee
  8. Int. J. Hydrogen Energy v.29 Photobiological hydrogen production by using olive mill wastewater as a sole substrate source Eroglu,E.;U.Gunduz;M.Yucel;L.Turker;I.Eroglu https://doi.org/10.1016/S0360-3199(03)00110-1
  9. Biosorption of Heavy Metals Biosorption by algal biomass Kuyucak,N.;B.Volesky;B.Volesky(ed.)
  10. Biotechnol. Adv. v.11 Bioremmoval of heavy metals by the use of microalgae Wide,E.W.;J.R.Benemann https://doi.org/10.1016/0734-9750(93)90003-6
  11. Adv. Biochem. Eng.;Biotechnol. v.46 Biological reduction of CO₂ emissions Karube,I.;T.takeuchi;D.J.Barnes
  12. J. Ind. Microbiol. Biotechnol. v.29 Use of Chlorella vulgaris for CO₂ mitigation in a photobioreactor Keffer,J.E.;G.T.Kleinheinz https://doi.org/10.1038/sj.jim.7000313
  13. Appl. Biochem. Biotechnol. v.39;40 Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler Negoro,M.;A.Hamasaki;Y.Ikuka;T.Makita;K.Hirayama;S.Suzuki
  14. Bioprocess Biosys. Eng. v.25 Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor Zhang,K.;N.Kurano;S.Miyachi https://doi.org/10.1007/s00449-002-0284-y
  15. Biotechnol. Bioprocess Eng. v.8 Microalgal removal of CO₂ from flue gases: Changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures Olaizola,M. https://doi.org/10.1007/BF02949280
  16. Biotechnol. Bioprocess Eng. v.8 review of advances in biological CO₂ mitigation technology Lee,J.S.;J.P.Lee https://doi.org/10.1007/BF02949279
  17. Int. J. Hydrogen Energy v.27 Photobiological hydrogen production: photochemical efficiency and bioreactor design Akkerman,I.;M.Janssen;J.Rocha;R.H.Wijffels https://doi.org/10.1016/S0360-3199(02)00071-X
  18. Nature Biotechnol. v.14 Hydrogen biotechnology: Progress and prospects Benemann,J. https://doi.org/10.1038/nbt0996-1101
  19. Int. J. Hydrogen Energy v.27 Biological hydrogen production; fundamentals and limiting processes Hallenbeck,P.C.;J.R.Benemann https://doi.org/10.1016/S0360-3199(02)00131-3
  20. Int. J. Hydrogen Energy v.27 Green alga hydrogen production: progress, challenges and prospects Melis,A. https://doi.org/10.1016/S0360-3199(02)00110-6
  21. Trends Biotechnol. v.5 MIcroalgae biotechnology Benemann,J.R.;D.M.Tillett;J.C.Weissman https://doi.org/10.1016/0167-7799(87)90037-0
  22. Algal Culture from Laboratory to Pilot Plant Non-sterile large-scale culture of Chlorella in greengouse and open air Gummert,F.;M.E.Meffer;H.Stratmann;Burlew,J.S.(ed.)
  23. Ind. Eng. Chem. v.43 Chemical engineering problems in large scale culture of algae Cook,P.M. https://doi.org/10.1021/ie50502a056
  24. Enzyme Microb. Technol. v.7 System design for the aqutotrophic production of microalgae Terry,K.L.;L.P.Raymond https://doi.org/10.1016/0141-0229(85)90148-6
  25. Large-scale Algal Culture Systems(Engineering Aspects) Oswald,W.J.
  26. J. Appl. Phycol. v.5 Biotechnology of algal biomass production: a review of systems for outdoor mass culture Chaumont,D. https://doi.org/10.1007/BF02184638
  27. American Society for Microbiology The efficiency of biosolar energy conversion by aquatic photosynthetic organisms;Microbial Mats: Physiological Ecology of Benthic Microbial Communities Avron,M.;Y.Cohen(ed.);E.Rosenberg(ed.)
  28. Handbook of Microalgal Mass Culture Outdoor mass cultures of microalgae Richmodn,A.;A.Richmodn(ed.)
  29. Trends Biotechnol. v.5 Enclosed bioreactors for the mass cultivation of photosynthetic microorganisms: the future trend Lee,Y.K.
  30. J. Chem. Tech. Biotechnol. v.33B A tubular photobioreactor for photosynthetic production of biomass from CO₂: Design and performance Pirt,S.J.;Y.K.Lee;M.R.Walach;M.W.Pirt;H.H.M.Balyuzi;M.J.Bazin
  31. J. Appl. Phycol. v.4 Performance of a flat plate, air-lift reactor for the growth of high biomass algal cultures Ratchford,I.A.J.;H.J.Fallowfield https://doi.org/10.1007/BF00003954
  32. J. Appl. Phycol. v.4 From open ponds to vertical alveolar panels: The Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms Tredici,M.R.;R.Materassi https://doi.org/10.1007/BF02161208
  33. J. Appl. Phycol. v.12 Commerical production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors Olaizola,M. https://doi.org/10.1023/A:1008159127672
  34. Biotechnol. Bioeng. v.40 Productivity of outdoor algal cultures in enclosed tubular photobioreactor Lee,Y.K.;C.S.Low https://doi.org/10.1002/bit.260400917
  35. Biotechnol. Bioeng. v.41 Productivity of outdoor algal cultures in unstable weather conditions Lee,Y.K.;C.S.Low https://doi.org/10.1002/bit.260411012
  36. Appl. Microbiol. Biotechnol. v.45 Increased coccolith production by Emiliania huxleyi cultures enriched with dissolved inorganic carbon Takano,H.;R.Takei;E.Manabe;J.G.Burgess;M.Hirano;T.Matsunaga
  37. J. Ferment. Bioeng. v.82 A novel internally illuminated stirred tank photobioreactor for large-scale cultivation og photosynthetic cells Ogbonna,J.C.;H.Yada;H.Masui;H.Tanaka https://doi.org/10.1016/0922-338X(96)89456-6
  38. Biotechnol. Bioeng. Symp. v.15 Photoautotrophic bioreactor using solar rays condensed by fresnel lenses and transmitted through optical fibers Mori,K.
  39. Biotechnol. Bioeng. v.38 High-density photoautotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system Javanmardian,M.;B.O.Palsson https://doi.org/10.1002/bit.260381010
  40. Biotechnol. Bioeng. v.44 High-density algal photobioreactors using light-emitting diodes Lee,C.G.;B.O.Palsson https://doi.org/10.1002/bit.260441002
  41. Biotechnol. Bioeng. v.50 Application of light-emitting diodes in bioreactors:Flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa) Matthijs,H.C.P.;H.Balke;U.M.van Hes;B.M.A.Kroon;L.R.Mur;R.A.Binot https://doi.org/10.1002/(SICI)1097-0290(19960405)50:1<98::AID-BIT11>3.0.CO;2-3
  42. J. Ferment. Bioeng. v.81 Carbon dioxede fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-collection device Hirata,S.;M.Hayashitani;M.Taya;S.Tone https://doi.org/10.1016/0922-338X(96)85151-8
  43. Biotechnol. Prog. v.17 Scale-up and design of a pilot-plant photobioreactor for the continuous culture of Spirulina platensis Vernerey,A.;J.Albiol;C.Lasseur;F.Godia https://doi.org/10.1021/bp010010j
  44. Biotechnol. Bioeng. v.26 Spectral shifting by dyes to enhance algae growth Prokop,A.;M.F.Quinn;M.Fekri;M.Murad;S.A.Ahmed https://doi.org/10.1002/bit.260261108
  45. J. Appl. Phycol. v.6 What kind of lamp for the cultivation of algae? Simmer,J.;V.Tichy;J.Doucha https://doi.org/10.1007/BF02181944
  46. Algal Photosynthesis Light Sources and Related Accessories Beider,R.J.;B.A.Osborne;R.J.Geider(ed.);B.A.Osborne(ed.)
  47. Bioprocess and Algae Reactor Technology, Apoptosis v.59 Photobioreactors: design and performance with respect to light energy input Pulz,O.;K.Scheibenbogen;T.Scheper(ed.) https://doi.org/10.1007/BFb0102298
  48. New Phytol. v.93 Adaptation of unicellular algae to irradiance: An analysis of strategies Richardson,K.;J.Beardall;J.A.Raven https://doi.org/10.1111/j.1469-8137.1983.tb03422.x
  49. Biotechnol. Bioeng. v.81 A mechanistic model of photosynthesis in microalgae Camacho Rubio,F.;F.Garcia Camacho;J.M.Fernandez Sevilla;Y.Chisti;E.Molina Grima https://doi.org/10.1002/bit.10492
  50. Ann. Rev. Plant Physiol. v.35 Photoinhibition of photosynthesis induced by visible light Powels,S.B. https://doi.org/10.1146/annurev.pp.35.060184.000311
  51. J. Photochem. Photobiol. B: Biol. v.21 Adaptation of the photosynthetic apparatus of cyanobacteria to light and CO₂ Reuter,W.;C.Muller https://doi.org/10.1016/1011-1344(93)80159-7
  52. Biotechnol. Bioprocess Eng. v.4 Calculation of light penetration depth in photobioreactors Lee,C.G. https://doi.org/10.1007/BF02931920
  53. Biotechnol. Bioeng. v.82 A light distribution model for an internally rediating photobioreactor Syh,I.S.;S.B.Lee https://doi.org/10.1002/bit.10558
  54. J. Microbiol. Biotechnol. v.10 Effect of flashing light on oxygen production rates in high-density algal cultures Park,K.H.;D.I.Kim;C.G.Lee
  55. J. Biotechnol. v.92 A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect DegenJ.;A.Uebele;A.Retze;U.Schmid-Staiger;W.Trosch https://doi.org/10.1016/S0168-1656(01)00350-9
  56. Biotechnol. Bioeng. v.28 Photosynthesis in modulated light: Quantitative dependence of photosynthetic enhancement on flashing rate Terry,K.L. https://doi.org/10.1002/bit.260280709
  57. Biotechnol. Bioprocess Eng. v.6 Effectiveness of flashing light for increasing photosynthetic efficiency of microalgal cultures over a critical cell density Park,K.H.;C.G.Lee https://doi.org/10.1007/BF02932549
  58. J. Appl. Phycol. v.8 Phototrophic growth in the lumostat: a photo-bioreactor with on-line optimization of light intensity Eriksen,N.T.;T.Geest;J.J.L.Iversen https://doi.org/10.1007/BF02178577
  59. J. Chem. Eng. Japan v.30 A strategy for control of light intensity in suspension culture of photoautotrophic liverwort cells, Marchantia paleacea var. diptera Hata,J.I.;Y.Toyo-Oka;M.Taya;S.Tone https://doi.org/10.1252/jcej.30.315
  60. J. Appl. Phycol. v.13 Cultivation of cyanobacterium in an internally rediating air-lift photobioreactor Suh,I.S.;S.B.Lee https://doi.org/10.1023/A:1017979431852
  61. Enzyme Microb. Technol. v.33 Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter Choi,S.L.;I.S.Suh;C.G.Lee https://doi.org/10.1016/S0141-0229(03)00137-6
  62. Appl. Phycol. v.3 High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoidosa culture Lee,Y.K.;H.S.Tay https://doi.org/10.1007/BF00003690
  63. J. Mar. Biotechnol. v.1 A new species of highly CO2-tolerant fast-growting marine microalga suitable for high-density culture Kodama,M.;H.Ikemoto;S.Miyachi
  64. Microbial Reactions v.23 Growth kinetics of photosynthetic microorganisms Aiba,S.Fiechter,A.(ed.) https://doi.org/10.1007/3540116982_3
  65. J. Phycol. v.31 Effect of dissolved oxygen partial pressure on the acumulation of astaxanthin in chemostat cultures of Haematococcus Lacustis (Chlorophyta) Lee,Y.K.;S.Y.Ding https://doi.org/10.1111/j.0022-3646.1995.00922.x
  66. J. Appl. Phycol. v.3 Culture of the astaxanthin-producing green alga Haematococcus pluvialis: I. Effects of nutrients of growth and cell type Borowitzka,M.A.;J.M.Huisman;A.Osborn https://doi.org/10.1007/BF02392882
  67. Process Biochem. v.33 Influence of medium components on astaxanthin content and production of Haematococcus pluvialis Gong,X.;F.Chen https://doi.org/10.1016/S0032-9592(98)00003-X
  68. Biotechnol. Bioeng. v.59 Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures Mandalam,R.C.;B.O.Palsson https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<605::AID-BIT11>3.0.CO;2-8
  69. Biotechnol. Lett. v.17 Continuous medium perfusion leads to long-term cell viability and oxygen production in high-density photobioreactors Lee,C.G.;B.O.Palsson https://doi.org/10.1007/BF00128376
  70. Bioresource Technol. v.38 Cell fragility: The key problem of microalgae mass production in closed photobioreactors Gudin,C.;D.Chaumont https://doi.org/10.1016/0960-8524(91)90146-B
  71. Bioresource Technol. v.38 Intensive outdoor algal cultures: How mixing enhances the photosynthetic production rate Bosca,C.;A.Dauta;O.Marvalin https://doi.org/10.1016/0960-8524(91)90152-A
  72. Process Biochem. v.35 Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of porphyridium cruentum Garcia Camacho,F.;A.Contreras Gomez;T.Mazzuca Sobezuk;E.Molina Grima https://doi.org/10.1016/S0032-9592(00)00138-2
  73. J. Chem. Tech. Biotechnol. v.40 Effect of hydrodynamic stress on Dunaliella growth Silva,H.J.;T.Cortinas;R.J.Ertola
  74. Enzyme Microb. Technol. v.29 Carboxymethyl cellulose protects algal cells against hydrodynamic stress Garcia Camacho,F.;E.Molina Grima;A.Sanchez Miror;V.Gonzalez Pascual;Y.Chisti https://doi.org/10.1016/S0141-0229(01)00442-2
  75. Production and Use. temperature as an improtart climate factor during mass production of microscopic algae;Algae Biomass Payer,H.D.;Y.Chiemvichak;K.Hosakul;C.Kongpanichkul;L.Kraidej;M.Nguitragul;S.Reungmanipytoon;P.Buri;G.Shelef(ed.);C.J.Soeder(ed.)
  76. Bioresource Technol. v.38 Temperaturs as an important factor affecting productivity and night biomass loss in Spirulina platensis grown outdoors in tubular photobioractors Torzillo,G.;A.Sacchi;R.Materassi https://doi.org/10.1016/0960-8524(91)90137-9
  77. J. Phycol. v.28 Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton Thompson,P.A.;M.X.Guo;P.J.Harrison https://doi.org/10.1111/j.0022-3646.1992.00481.x
  78. New Phytol. v.110 Temperature and algal growth Raven,J.A.;R.J.Geider https://doi.org/10.1111/j.1469-8137.1988.tb00282.x
  79. J. Phycol. v.27 Environmental effects on algal phctosynthesis: Temperature Davison,I.R. https://doi.org/10.1111/j.0022-3646.1991.00002.x
  80. Plant. Physiol. v.67 Inorganic carbon accumulation and photosynthesis in a blue-green alga as a function of external pH Coleman,J.R.;B.Colman https://doi.org/10.1104/pp.67.5.917
  81. J. Chem. Tech. Biotechnol. v.34B CO₂ absorption rate in an algal culture: Effect of pH Lee,Y.K.;S.J.Pirt
  82. Plant Physiol. v.58 pH Changes in the Cytoplasm of the blue-green alga Anacystis nidulans caused by light-dependent proton flux into the thylakoid space Falkner,G.;F.Horner https://doi.org/10.1104/pp.58.6.717
  83. Biotechnol. Bioeng. v.36 Kinetics of CO2 hydration in fermentors: pH and pressure effects Yegneswaran,P.K.;M.R.Gray;B.G.Thompson https://doi.org/10.1002/bit.260360112
  84. Biotechnol. Lett. v.23 Growth monitoring of a photosynthetic microorganism (Spirulina platensis) by pressure measurement Cogne,G.;C.Lasseur;J.F.Cornet;C.G.Dussap;J.B.Gros https://doi.org/10.1023/A:1010521406607
  85. Handbook of Microalgal Mass Culture Products from microalgae Cohen,Z.;A.Richmond(ed.)
  86. Trends Biotechnol. v.8 The biotechnology of cultivating the halotolerant alga Dunaliella Ben-Amotz,A.;M.Avron https://doi.org/10.1016/0167-7799(90)90152-N
  87. Dunaliella: Physiology, Biochemistry, and Biotechnology Avron,M.;A.Ben-Amotz
  88. Nature v.347 Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation Wada,H.;Z.Gombos;N.Murata https://doi.org/10.1038/347200a0
  89. Plant Mol. Biol. v.29 Transformation of Synechococcus with a gene for choline oxidase enhances tolerane to salt stress Deshnium,P.;D.A.Los;H.hayashi;L.Mustardy;N.Murata https://doi.org/10.1007/BF00014964
  90. J. Appl. Phycol. v.10 Dunaliela salina (Chlorophta) with small chlorphyll antenna sizes wxhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells Melis,A.;J.Neidhardt;J.R.Benemann
  91. J. Appl. Phycol. v.12 The effect of reducing light-harvesting pigment on marine microalgal productivity Nakajima,Y.;R.Ueda https://doi.org/10.1023/A:1008108500409
  92. Science v.292 Tropical cinversion of an obligate photoautotrophic organism through metabolic engineering Zaslavskaia,L.A.;J.C.Lippmeier;C.Shih;D.Ehrhardt;A.R.Grossman;K.E.Apt https://doi.org/10.1126/science.160015
  93. Algal Culture from Laboratory to Pilot Plant Laboratory experiments on Chlorella culture at the Carnegie Institution of Washington Davis,E.A.;J.Dedrick;J.H.C.Smith;H.A.Spoehr;Burlew,J.S.(ed.)
  94. Algal Culture from Laboratory to Pilot Plant Effect of diurnally intermittent illumination on the growth and some cellular characteristics of Chlorella Tamiya,H.;K.Shibata;T.Sasa;T.lwamura;Y.Morimura;J.S.Burlew(ed.)
  95. Biotechnol. Bioeng. v.19 Thirth liter tower-type pilot plant for the mass cultivation of light and motion sensitive planktonic algae Juttner,F. https://doi.org/10.1002/bit.260191107
  96. Algal Biomass Technologies: An Interdisciplinary Perspective. J. Cramer Cultivation of microalgae in a photobioreactor Roubicek,R.V.;K.H.Patton;K.H.McCorkle;A.L.Rakow;W.R.Barclay(ed.);R.P.McIntosh(ed.)
  97. Biomass v.11 Production of Spirulina biomass in closed photobioreactors Torzillo,G.;B.Pushparaj;F.Bocci;W.Balloni;R.Materassi;G.Florenzano https://doi.org/10.1016/0144-4565(86)90021-1
  98. Process Biochem. v.22 Production of Rhodobacter capsulatus ATCC 23782 with short residence time in a continuous flow photobioreactor Driessens,K.;J.Liessens;S.Masduki;W.Verstraete;H.Nelis;A.De Leenheer
  99. Biotechnol. Lett. v.10 Vertical tubular reactor for microalgae cultivation Miyamoto,K.;O.Wable;J.R.Benemann https://doi.org/10.1007/BF01025286
  100. Biotechnol. Bioeng. v.34 Culture of photomixotrophic soybean and pine in a modified fermentor using a novel impeller Treat,W.J.;C.R.Engler https://doi.org/10.1002/bit.260340910
  101. Aquaculture v.87 An intensive continuous culture system using tubular photobioreactors for producing microalgae James,C.M.;A.M.Al-Khars https://doi.org/10.1016/0044-8486(90)90075-X
  102. New Phytol. v.116 A laboratory scale air-lift helical photobioreactor to increase biomass output rate of photosynthetic algal cultures Lee,E.T.Y.;M.J.Bazin https://doi.org/10.1111/j.1469-8137.1990.tb04722.x
  103. Appl. Biochem. Biotechnol. v.34;35 CO2 removal by high-density culture of a marine cyanobacterium Synechococcs sp. using an improved photobioreactor employing light diffusing optical fibers Takano,H.;H.takeyama;N.Nakamura;K.Sode;J.G.Burgess;E.Manabe;M.Hirano;T.Matsunaga
  104. JAOCS v.69 Growth and eicosapentaenoic acid production by Phaeodactylum tricornutum in batch and continuous culture systems Yongmanitchai,W.;O.P.Ward https://doi.org/10.1007/BF02636113
  105. Appl. Microbiol. Biotechnol. v.39 An optical fiber photobioreactor for enhanced production of the marine unicellular alga Isochrysis aff. Galbana T-Iso (UTEX LB 2307) rich in docosahexaenoic acid Burgess,J.G.;K.Iwamoto;Y.Miura;H.takano;T.Matsunaga https://doi.org/10.1007/BF00205032
  106. Biotechnol. Bioeng. v.42 A two-plane tubular photobioreactor for outdoor culture of Spirulina Torzillo,G.;P.Carlozzi;B.Pushparaj;E.Montaini;R.Materassi https://doi.org/10.1002/bit.260420714
  107. Biotechnol. Bioeng. v.51 A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs Hu,Q.;H.Guterman;A.Richmond https://doi.org/10.1002/(SICI)1097-0290(19960705)51:1<51::AID-BIT6>3.0.CO;2-#
  108. Eur. J. Phycol. v.33 Combined effects of light intensity, light intensity, light-path and culture dinsity on output rate of Spirulina platensis (Cyanobacteria) Hu,Q.;Y.Zarmi;A.Richmond https://doi.org/10.1080/09670269810001736663
  109. Appl. Biochem. Biotechnol. v.39;40 Production of ultrafine calcite particles by coccolothophorid algae grown in a biosolar reactor supplies with sunlight Takano,H.;H.Furu-Une;J.G.Burgess;E.Manabe;M.Hirano;M.Okazaki;T.Matsunaga