References
- Enzyem Microb. Technol v.8 Biologically active compounds from microalgae Metting,B.;J.W.Pyne https://doi.org/10.1016/0141-0229(86)90144-4
- Secondary metabolites of pharmaceutical potential;Longman Scientific & Technical Alga! and Cyanobacterial Biotechnology Glombitza,K.W.;M.KochlR.C.Cresswell(ed.);T.A.V.Rees(ed.);H.Shah(ed.)
- Pestic. Sci. v.39 Algae as a source of biologically active products Cannell,R.J.P. https://doi.org/10.1002/ps.2780390208
- Adv. Space Res. v.12 Design and operation of an algal photobioreactor system Javanmardian,M.;B.O.Palsson
- J. Ferment. Bioeng. v.79 Light emitting diodebased algal photobioreactor with external gas exchange Lee,C.G.;B.O.Palsson https://doi.org/10.1016/0922-338X(95)90613-5
- Microalgal Biotechnology Borowitzka,M.A.;L.J.Borowitzka
- J. Microbiol. Biotechnol v.12 Nitrogen removal from wastewaters by microalgae without consuming organic carbon sources Lee,K.;C.G.Lee
- Int. J. Hydrogen Energy v.29 Photobiological hydrogen production by using olive mill wastewater as a sole substrate source Eroglu,E.;U.Gunduz;M.Yucel;L.Turker;I.Eroglu https://doi.org/10.1016/S0360-3199(03)00110-1
- Biosorption of Heavy Metals Biosorption by algal biomass Kuyucak,N.;B.Volesky;B.Volesky(ed.)
- Biotechnol. Adv. v.11 Bioremmoval of heavy metals by the use of microalgae Wide,E.W.;J.R.Benemann https://doi.org/10.1016/0734-9750(93)90003-6
- Adv. Biochem. Eng.;Biotechnol. v.46 Biological reduction of CO₂ emissions Karube,I.;T.takeuchi;D.J.Barnes
- J. Ind. Microbiol. Biotechnol. v.29 Use of Chlorella vulgaris for CO₂ mitigation in a photobioreactor Keffer,J.E.;G.T.Kleinheinz https://doi.org/10.1038/sj.jim.7000313
- Appl. Biochem. Biotechnol. v.39;40 Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler Negoro,M.;A.Hamasaki;Y.Ikuka;T.Makita;K.Hirayama;S.Suzuki
- Bioprocess Biosys. Eng. v.25 Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor Zhang,K.;N.Kurano;S.Miyachi https://doi.org/10.1007/s00449-002-0284-y
- Biotechnol. Bioprocess Eng. v.8 Microalgal removal of CO₂ from flue gases: Changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures Olaizola,M. https://doi.org/10.1007/BF02949280
- Biotechnol. Bioprocess Eng. v.8 review of advances in biological CO₂ mitigation technology Lee,J.S.;J.P.Lee https://doi.org/10.1007/BF02949279
- Int. J. Hydrogen Energy v.27 Photobiological hydrogen production: photochemical efficiency and bioreactor design Akkerman,I.;M.Janssen;J.Rocha;R.H.Wijffels https://doi.org/10.1016/S0360-3199(02)00071-X
- Nature Biotechnol. v.14 Hydrogen biotechnology: Progress and prospects Benemann,J. https://doi.org/10.1038/nbt0996-1101
- Int. J. Hydrogen Energy v.27 Biological hydrogen production; fundamentals and limiting processes Hallenbeck,P.C.;J.R.Benemann https://doi.org/10.1016/S0360-3199(02)00131-3
- Int. J. Hydrogen Energy v.27 Green alga hydrogen production: progress, challenges and prospects Melis,A. https://doi.org/10.1016/S0360-3199(02)00110-6
- Trends Biotechnol. v.5 MIcroalgae biotechnology Benemann,J.R.;D.M.Tillett;J.C.Weissman https://doi.org/10.1016/0167-7799(87)90037-0
- Algal Culture from Laboratory to Pilot Plant Non-sterile large-scale culture of Chlorella in greengouse and open air Gummert,F.;M.E.Meffer;H.Stratmann;Burlew,J.S.(ed.)
- Ind. Eng. Chem. v.43 Chemical engineering problems in large scale culture of algae Cook,P.M. https://doi.org/10.1021/ie50502a056
- Enzyme Microb. Technol. v.7 System design for the aqutotrophic production of microalgae Terry,K.L.;L.P.Raymond https://doi.org/10.1016/0141-0229(85)90148-6
- Large-scale Algal Culture Systems(Engineering Aspects) Oswald,W.J.
- J. Appl. Phycol. v.5 Biotechnology of algal biomass production: a review of systems for outdoor mass culture Chaumont,D. https://doi.org/10.1007/BF02184638
- American Society for Microbiology The efficiency of biosolar energy conversion by aquatic photosynthetic organisms;Microbial Mats: Physiological Ecology of Benthic Microbial Communities Avron,M.;Y.Cohen(ed.);E.Rosenberg(ed.)
- Handbook of Microalgal Mass Culture Outdoor mass cultures of microalgae Richmodn,A.;A.Richmodn(ed.)
- Trends Biotechnol. v.5 Enclosed bioreactors for the mass cultivation of photosynthetic microorganisms: the future trend Lee,Y.K.
- J. Chem. Tech. Biotechnol. v.33B A tubular photobioreactor for photosynthetic production of biomass from CO₂: Design and performance Pirt,S.J.;Y.K.Lee;M.R.Walach;M.W.Pirt;H.H.M.Balyuzi;M.J.Bazin
- J. Appl. Phycol. v.4 Performance of a flat plate, air-lift reactor for the growth of high biomass algal cultures Ratchford,I.A.J.;H.J.Fallowfield https://doi.org/10.1007/BF00003954
- J. Appl. Phycol. v.4 From open ponds to vertical alveolar panels: The Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms Tredici,M.R.;R.Materassi https://doi.org/10.1007/BF02161208
- J. Appl. Phycol. v.12 Commerical production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors Olaizola,M. https://doi.org/10.1023/A:1008159127672
- Biotechnol. Bioeng. v.40 Productivity of outdoor algal cultures in enclosed tubular photobioreactor Lee,Y.K.;C.S.Low https://doi.org/10.1002/bit.260400917
- Biotechnol. Bioeng. v.41 Productivity of outdoor algal cultures in unstable weather conditions Lee,Y.K.;C.S.Low https://doi.org/10.1002/bit.260411012
- Appl. Microbiol. Biotechnol. v.45 Increased coccolith production by Emiliania huxleyi cultures enriched with dissolved inorganic carbon Takano,H.;R.Takei;E.Manabe;J.G.Burgess;M.Hirano;T.Matsunaga
- J. Ferment. Bioeng. v.82 A novel internally illuminated stirred tank photobioreactor for large-scale cultivation og photosynthetic cells Ogbonna,J.C.;H.Yada;H.Masui;H.Tanaka https://doi.org/10.1016/0922-338X(96)89456-6
- Biotechnol. Bioeng. Symp. v.15 Photoautotrophic bioreactor using solar rays condensed by fresnel lenses and transmitted through optical fibers Mori,K.
- Biotechnol. Bioeng. v.38 High-density photoautotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system Javanmardian,M.;B.O.Palsson https://doi.org/10.1002/bit.260381010
- Biotechnol. Bioeng. v.44 High-density algal photobioreactors using light-emitting diodes Lee,C.G.;B.O.Palsson https://doi.org/10.1002/bit.260441002
- Biotechnol. Bioeng. v.50 Application of light-emitting diodes in bioreactors:Flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa) Matthijs,H.C.P.;H.Balke;U.M.van Hes;B.M.A.Kroon;L.R.Mur;R.A.Binot https://doi.org/10.1002/(SICI)1097-0290(19960405)50:1<98::AID-BIT11>3.0.CO;2-3
- J. Ferment. Bioeng. v.81 Carbon dioxede fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-collection device Hirata,S.;M.Hayashitani;M.Taya;S.Tone https://doi.org/10.1016/0922-338X(96)85151-8
- Biotechnol. Prog. v.17 Scale-up and design of a pilot-plant photobioreactor for the continuous culture of Spirulina platensis Vernerey,A.;J.Albiol;C.Lasseur;F.Godia https://doi.org/10.1021/bp010010j
- Biotechnol. Bioeng. v.26 Spectral shifting by dyes to enhance algae growth Prokop,A.;M.F.Quinn;M.Fekri;M.Murad;S.A.Ahmed https://doi.org/10.1002/bit.260261108
- J. Appl. Phycol. v.6 What kind of lamp for the cultivation of algae? Simmer,J.;V.Tichy;J.Doucha https://doi.org/10.1007/BF02181944
- Algal Photosynthesis Light Sources and Related Accessories Beider,R.J.;B.A.Osborne;R.J.Geider(ed.);B.A.Osborne(ed.)
- Bioprocess and Algae Reactor Technology, Apoptosis v.59 Photobioreactors: design and performance with respect to light energy input Pulz,O.;K.Scheibenbogen;T.Scheper(ed.) https://doi.org/10.1007/BFb0102298
- New Phytol. v.93 Adaptation of unicellular algae to irradiance: An analysis of strategies Richardson,K.;J.Beardall;J.A.Raven https://doi.org/10.1111/j.1469-8137.1983.tb03422.x
- Biotechnol. Bioeng. v.81 A mechanistic model of photosynthesis in microalgae Camacho Rubio,F.;F.Garcia Camacho;J.M.Fernandez Sevilla;Y.Chisti;E.Molina Grima https://doi.org/10.1002/bit.10492
- Ann. Rev. Plant Physiol. v.35 Photoinhibition of photosynthesis induced by visible light Powels,S.B. https://doi.org/10.1146/annurev.pp.35.060184.000311
- J. Photochem. Photobiol. B: Biol. v.21 Adaptation of the photosynthetic apparatus of cyanobacteria to light and CO₂ Reuter,W.;C.Muller https://doi.org/10.1016/1011-1344(93)80159-7
- Biotechnol. Bioprocess Eng. v.4 Calculation of light penetration depth in photobioreactors Lee,C.G. https://doi.org/10.1007/BF02931920
- Biotechnol. Bioeng. v.82 A light distribution model for an internally rediating photobioreactor Syh,I.S.;S.B.Lee https://doi.org/10.1002/bit.10558
- J. Microbiol. Biotechnol. v.10 Effect of flashing light on oxygen production rates in high-density algal cultures Park,K.H.;D.I.Kim;C.G.Lee
- J. Biotechnol. v.92 A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect DegenJ.;A.Uebele;A.Retze;U.Schmid-Staiger;W.Trosch https://doi.org/10.1016/S0168-1656(01)00350-9
- Biotechnol. Bioeng. v.28 Photosynthesis in modulated light: Quantitative dependence of photosynthetic enhancement on flashing rate Terry,K.L. https://doi.org/10.1002/bit.260280709
- Biotechnol. Bioprocess Eng. v.6 Effectiveness of flashing light for increasing photosynthetic efficiency of microalgal cultures over a critical cell density Park,K.H.;C.G.Lee https://doi.org/10.1007/BF02932549
- J. Appl. Phycol. v.8 Phototrophic growth in the lumostat: a photo-bioreactor with on-line optimization of light intensity Eriksen,N.T.;T.Geest;J.J.L.Iversen https://doi.org/10.1007/BF02178577
- J. Chem. Eng. Japan v.30 A strategy for control of light intensity in suspension culture of photoautotrophic liverwort cells, Marchantia paleacea var. diptera Hata,J.I.;Y.Toyo-Oka;M.Taya;S.Tone https://doi.org/10.1252/jcej.30.315
- J. Appl. Phycol. v.13 Cultivation of cyanobacterium in an internally rediating air-lift photobioreactor Suh,I.S.;S.B.Lee https://doi.org/10.1023/A:1017979431852
- Enzyme Microb. Technol. v.33 Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter Choi,S.L.;I.S.Suh;C.G.Lee https://doi.org/10.1016/S0141-0229(03)00137-6
- Appl. Phycol. v.3 High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoidosa culture Lee,Y.K.;H.S.Tay https://doi.org/10.1007/BF00003690
- J. Mar. Biotechnol. v.1 A new species of highly CO2-tolerant fast-growting marine microalga suitable for high-density culture Kodama,M.;H.Ikemoto;S.Miyachi
- Microbial Reactions v.23 Growth kinetics of photosynthetic microorganisms Aiba,S.Fiechter,A.(ed.) https://doi.org/10.1007/3540116982_3
- J. Phycol. v.31 Effect of dissolved oxygen partial pressure on the acumulation of astaxanthin in chemostat cultures of Haematococcus Lacustis (Chlorophyta) Lee,Y.K.;S.Y.Ding https://doi.org/10.1111/j.0022-3646.1995.00922.x
- J. Appl. Phycol. v.3 Culture of the astaxanthin-producing green alga Haematococcus pluvialis: I. Effects of nutrients of growth and cell type Borowitzka,M.A.;J.M.Huisman;A.Osborn https://doi.org/10.1007/BF02392882
- Process Biochem. v.33 Influence of medium components on astaxanthin content and production of Haematococcus pluvialis Gong,X.;F.Chen https://doi.org/10.1016/S0032-9592(98)00003-X
- Biotechnol. Bioeng. v.59 Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures Mandalam,R.C.;B.O.Palsson https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<605::AID-BIT11>3.0.CO;2-8
- Biotechnol. Lett. v.17 Continuous medium perfusion leads to long-term cell viability and oxygen production in high-density photobioreactors Lee,C.G.;B.O.Palsson https://doi.org/10.1007/BF00128376
- Bioresource Technol. v.38 Cell fragility: The key problem of microalgae mass production in closed photobioreactors Gudin,C.;D.Chaumont https://doi.org/10.1016/0960-8524(91)90146-B
- Bioresource Technol. v.38 Intensive outdoor algal cultures: How mixing enhances the photosynthetic production rate Bosca,C.;A.Dauta;O.Marvalin https://doi.org/10.1016/0960-8524(91)90152-A
- Process Biochem. v.35 Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of porphyridium cruentum Garcia Camacho,F.;A.Contreras Gomez;T.Mazzuca Sobezuk;E.Molina Grima https://doi.org/10.1016/S0032-9592(00)00138-2
- J. Chem. Tech. Biotechnol. v.40 Effect of hydrodynamic stress on Dunaliella growth Silva,H.J.;T.Cortinas;R.J.Ertola
- Enzyme Microb. Technol. v.29 Carboxymethyl cellulose protects algal cells against hydrodynamic stress Garcia Camacho,F.;E.Molina Grima;A.Sanchez Miror;V.Gonzalez Pascual;Y.Chisti https://doi.org/10.1016/S0141-0229(01)00442-2
- Production and Use. temperature as an improtart climate factor during mass production of microscopic algae;Algae Biomass Payer,H.D.;Y.Chiemvichak;K.Hosakul;C.Kongpanichkul;L.Kraidej;M.Nguitragul;S.Reungmanipytoon;P.Buri;G.Shelef(ed.);C.J.Soeder(ed.)
- Bioresource Technol. v.38 Temperaturs as an important factor affecting productivity and night biomass loss in Spirulina platensis grown outdoors in tubular photobioractors Torzillo,G.;A.Sacchi;R.Materassi https://doi.org/10.1016/0960-8524(91)90137-9
- J. Phycol. v.28 Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton Thompson,P.A.;M.X.Guo;P.J.Harrison https://doi.org/10.1111/j.0022-3646.1992.00481.x
- New Phytol. v.110 Temperature and algal growth Raven,J.A.;R.J.Geider https://doi.org/10.1111/j.1469-8137.1988.tb00282.x
- J. Phycol. v.27 Environmental effects on algal phctosynthesis: Temperature Davison,I.R. https://doi.org/10.1111/j.0022-3646.1991.00002.x
- Plant. Physiol. v.67 Inorganic carbon accumulation and photosynthesis in a blue-green alga as a function of external pH Coleman,J.R.;B.Colman https://doi.org/10.1104/pp.67.5.917
- J. Chem. Tech. Biotechnol. v.34B CO₂ absorption rate in an algal culture: Effect of pH Lee,Y.K.;S.J.Pirt
- Plant Physiol. v.58 pH Changes in the Cytoplasm of the blue-green alga Anacystis nidulans caused by light-dependent proton flux into the thylakoid space Falkner,G.;F.Horner https://doi.org/10.1104/pp.58.6.717
- Biotechnol. Bioeng. v.36 Kinetics of CO2 hydration in fermentors: pH and pressure effects Yegneswaran,P.K.;M.R.Gray;B.G.Thompson https://doi.org/10.1002/bit.260360112
- Biotechnol. Lett. v.23 Growth monitoring of a photosynthetic microorganism (Spirulina platensis) by pressure measurement Cogne,G.;C.Lasseur;J.F.Cornet;C.G.Dussap;J.B.Gros https://doi.org/10.1023/A:1010521406607
- Handbook of Microalgal Mass Culture Products from microalgae Cohen,Z.;A.Richmond(ed.)
- Trends Biotechnol. v.8 The biotechnology of cultivating the halotolerant alga Dunaliella Ben-Amotz,A.;M.Avron https://doi.org/10.1016/0167-7799(90)90152-N
- Dunaliella: Physiology, Biochemistry, and Biotechnology Avron,M.;A.Ben-Amotz
- Nature v.347 Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation Wada,H.;Z.Gombos;N.Murata https://doi.org/10.1038/347200a0
- Plant Mol. Biol. v.29 Transformation of Synechococcus with a gene for choline oxidase enhances tolerane to salt stress Deshnium,P.;D.A.Los;H.hayashi;L.Mustardy;N.Murata https://doi.org/10.1007/BF00014964
- J. Appl. Phycol. v.10 Dunaliela salina (Chlorophta) with small chlorphyll antenna sizes wxhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells Melis,A.;J.Neidhardt;J.R.Benemann
- J. Appl. Phycol. v.12 The effect of reducing light-harvesting pigment on marine microalgal productivity Nakajima,Y.;R.Ueda https://doi.org/10.1023/A:1008108500409
- Science v.292 Tropical cinversion of an obligate photoautotrophic organism through metabolic engineering Zaslavskaia,L.A.;J.C.Lippmeier;C.Shih;D.Ehrhardt;A.R.Grossman;K.E.Apt https://doi.org/10.1126/science.160015
- Algal Culture from Laboratory to Pilot Plant Laboratory experiments on Chlorella culture at the Carnegie Institution of Washington Davis,E.A.;J.Dedrick;J.H.C.Smith;H.A.Spoehr;Burlew,J.S.(ed.)
- Algal Culture from Laboratory to Pilot Plant Effect of diurnally intermittent illumination on the growth and some cellular characteristics of Chlorella Tamiya,H.;K.Shibata;T.Sasa;T.lwamura;Y.Morimura;J.S.Burlew(ed.)
- Biotechnol. Bioeng. v.19 Thirth liter tower-type pilot plant for the mass cultivation of light and motion sensitive planktonic algae Juttner,F. https://doi.org/10.1002/bit.260191107
- Algal Biomass Technologies: An Interdisciplinary Perspective. J. Cramer Cultivation of microalgae in a photobioreactor Roubicek,R.V.;K.H.Patton;K.H.McCorkle;A.L.Rakow;W.R.Barclay(ed.);R.P.McIntosh(ed.)
- Biomass v.11 Production of Spirulina biomass in closed photobioreactors Torzillo,G.;B.Pushparaj;F.Bocci;W.Balloni;R.Materassi;G.Florenzano https://doi.org/10.1016/0144-4565(86)90021-1
- Process Biochem. v.22 Production of Rhodobacter capsulatus ATCC 23782 with short residence time in a continuous flow photobioreactor Driessens,K.;J.Liessens;S.Masduki;W.Verstraete;H.Nelis;A.De Leenheer
- Biotechnol. Lett. v.10 Vertical tubular reactor for microalgae cultivation Miyamoto,K.;O.Wable;J.R.Benemann https://doi.org/10.1007/BF01025286
- Biotechnol. Bioeng. v.34 Culture of photomixotrophic soybean and pine in a modified fermentor using a novel impeller Treat,W.J.;C.R.Engler https://doi.org/10.1002/bit.260340910
- Aquaculture v.87 An intensive continuous culture system using tubular photobioreactors for producing microalgae James,C.M.;A.M.Al-Khars https://doi.org/10.1016/0044-8486(90)90075-X
- New Phytol. v.116 A laboratory scale air-lift helical photobioreactor to increase biomass output rate of photosynthetic algal cultures Lee,E.T.Y.;M.J.Bazin https://doi.org/10.1111/j.1469-8137.1990.tb04722.x
- Appl. Biochem. Biotechnol. v.34;35 CO2 removal by high-density culture of a marine cyanobacterium Synechococcs sp. using an improved photobioreactor employing light diffusing optical fibers Takano,H.;H.takeyama;N.Nakamura;K.Sode;J.G.Burgess;E.Manabe;M.Hirano;T.Matsunaga
- JAOCS v.69 Growth and eicosapentaenoic acid production by Phaeodactylum tricornutum in batch and continuous culture systems Yongmanitchai,W.;O.P.Ward https://doi.org/10.1007/BF02636113
- Appl. Microbiol. Biotechnol. v.39 An optical fiber photobioreactor for enhanced production of the marine unicellular alga Isochrysis aff. Galbana T-Iso (UTEX LB 2307) rich in docosahexaenoic acid Burgess,J.G.;K.Iwamoto;Y.Miura;H.takano;T.Matsunaga https://doi.org/10.1007/BF00205032
- Biotechnol. Bioeng. v.42 A two-plane tubular photobioreactor for outdoor culture of Spirulina Torzillo,G.;P.Carlozzi;B.Pushparaj;E.Montaini;R.Materassi https://doi.org/10.1002/bit.260420714
- Biotechnol. Bioeng. v.51 A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs Hu,Q.;H.Guterman;A.Richmond https://doi.org/10.1002/(SICI)1097-0290(19960705)51:1<51::AID-BIT6>3.0.CO;2-#
- Eur. J. Phycol. v.33 Combined effects of light intensity, light intensity, light-path and culture dinsity on output rate of Spirulina platensis (Cyanobacteria) Hu,Q.;Y.Zarmi;A.Richmond https://doi.org/10.1080/09670269810001736663
- Appl. Biochem. Biotechnol. v.39;40 Production of ultrafine calcite particles by coccolothophorid algae grown in a biosolar reactor supplies with sunlight Takano,H.;H.Furu-Une;J.G.Burgess;E.Manabe;M.Hirano;M.Okazaki;T.Matsunaga