Abstract
This paper presents two methods for automatic estimation of threshold values in unsupervised change detection of multi-temporal remote sensing images. The proposed methods consist of two analytical steps. The first step is to compute the parameters of a 3-component Gaussian mixture model from difference or ratio images. The second step is to determine a threshold value using Bayesian rule for minimum error. The first method which is an extended version of Bruzzone and Prieto' method (2000) is to apply an Expectation-Maximization algorithm for estimation of the parameters of the Gaussian mixture model. The second method is based on an iterative thresholding algorithm that successively employs thresholding and estimation of the model parameters. The effectiveness and applicability of the methods proposed here were illustrated by two experiments and one case study including the synthetic data sets and KOMPSAT-1 EOC images. The experiments demonstrate that the proposed methods can effectively estimate the model parameters and the threshold value determined shows the minimum overall error.
이 논문은 다중시기 원격탐사 화상의 무감독 변화탐지를 위해 자동으로 임계치를 결정하는 두가지 방법을 제안하였다. 두 방법 모두 3성분 가우시안 혼합 확률 모델의 파라미터 추정과 베이지안 최소 오차 이론을 이용한 임계치 결정의 두 단계로 이루어져 있다. 첫 번째 방법은 Bruzzone and Prieto (2000)의 방법을 확장 적용한 것으로, 혼합 확률 모델의 파라미터 추정에 기대최대화 기법을 적용한다. 두 번째 제안 방법은 연속적으로 임계치 결정과 혼합 확률 모델의 파라미터 추정을 수행한다. 모의 화상과 KOMPSAT-1 EOC 화상에 적용한 결과, 제안한 두 기법 모두 효율적으로 모델 파라미터를 추정할 수 있었으며, 최소 오차를 보이는 임계치에 근사한 값을 추출할 수 있었다.