Compounds Obtained from Sida acuta with the Potential to Induce Quinone Reductase and to Inhibit 7,12-Dimethylbenz-[a]anthracene-Induced Preneoplastic Lesions in a Mouse Mammary Organ Culture Model

  • Jang, Dae-Sik (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, and Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago) ;
  • Park, Eun-Jung (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, and Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago) ;
  • Kang, Young-Hwa (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, and Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago) ;
  • Su, Bao-Ning (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, and Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago) ;
  • Hawthorne, Michael-E. (Department of Surgical Oncology, College of Medicine, University of Illinois at Chicago) ;
  • Vigo, Jose-Schunke (Instituto Nacional de Medicina Tradicional (INMETRA), Minesterio de Salud, Jesus Maria, Lima, Peru, Purdue University) ;
  • Graham, James-G. (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, and Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago) ;
  • Cabieses, Fernando (Department of Surgical Oncology, College of Medicine, University of Illinois at Chicago) ;
  • Fong, Harry H.S. (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, and Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago) ;
  • Mehta, Rajendra-G. (Department of Surgical Oncology, College of Medicine, University of Illinois) ;
  • Pezzuto, John-M. (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, and Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Heine Pharmach Building, Purdue University) ;
  • Kinghorn, A.-Douglas (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, and Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago)
  • Published : 2003.08.01

Abstract

Activity-guided fractionation of the EtOAc-soluble extract of the whole plants of Sida acuta using a bioassay based on the induction of quinone reductase (OR) in cultured Hepa 1c1c7 mouse hepatoma cells, led to the isolation of ten active compounds of previously known structure, quindolinone (1), cryptolepinone (2), 11-methoxyquindoline (3), N-trans-feruloyltyramine (4), vomifoliol (5), loliolide (6), 4-ketopinoresinol (7), scopoletin (8), evofolin-A (9), and evofolin-B (10), along with five inactive compounds of known structure, ferulic acid, sinapic acid, syringic acid, ($\pm$)-syringaresinol, and vanillic acid. These isolates were identified by physical and spectral data measurement. A new derivative of quindolinone, 5,10-dimethylquindolin-11-one (1a) was synthesized and characterized spectroscopically. Of the active substances, compounds 1-3 and 1a exhibited the most potent QR activity, with observed CD (concentration required to double induction) values ranging from 0.01 to 0.12 $\mu$ g/mL. Six compounds were then evaluated in a mouse mammary organ culture assay, with cryptolepinone (2), N-trans-feruloyltyramine (4), and 5,10-dimethylquindolin-11-one (1a) found to exhibit 83.3, 75.0, and 66.7% inhibition of 7,12-dimethylbenz[a]anthracene-induced preneoplastic lesions, respectively, at a dose of 10 $\mu\textrm{g}$/mL.

Keywords

References

  1. Caceres, A., Giron, L. M., and Martinez, A. M., Diuretic activity of plants used for the treatment of urinary ailments in Guatemala. J. Ethnopharmacol., 19, 233-245 (1987) https://doi.org/10.1016/0378-8741(87)90001-8
  2. Cao, J. and Qi, Y., Studies on the chemical constituents of the herb 'Huanghuaren' (Sida acuta Burm. f.). Zhongguo Zhongyao Zazhi, 18, 681-682 (1993)
  3. Chang, L. C., Gerhauser, C., Song, L. L., Farnsworth, N. R., Pezzuto, J. M., and Kinghorn, A. D., Activity-guided isolation of constituents of Tephrosia purpurea with the potential to induce the phase II enzyme, quinone reductase. J. Nat. Prod., 60, 869-873 (1997) https://doi.org/10.1021/np970236p
  4. Coee, F. G. and Anderson, G. J., Ethnobotany of the Garifuna of Eastern Nicaragua. Econ. Bot., 50, 71-107 (1996) https://doi.org/10.1007/BF02862114
  5. Crouch, R. C., Davis, A. O., Spitzer, T. D., Martin, G. E., Sharaf, M. M. H., Schiff, P. L., Jr., Phoebe, C. H., Jr., and Tackie, A. N., Elucidation of the structure of quindolinone, a minor alkaloid of Cryptolepis sanguinolenta: Submilligram $^1H-^{13}C$ and $^1H-^{15}N$ heteronuclear shift correlation experiments using micro inverse-detection. J. Heterocycl. Chem., 32, 1077-1080 (1995) https://doi.org/10.1002/jhet.5570320369
  6. Dinan, L., Bourne, P., and Whiting, P., Phytoecdysteroid profiles in seeds of Sida spp. (Malvaceae). Phytochem. Anal., 12, 110-119 (2001) https://doi.org/10.1002/pca.566
  7. Fort, D. M., Litvak, J., Chen, J. L., Lu, Q., Phuan, P.-W., Cooper, R., and Bierer, D. E., Isolation and unambiguous synthesis of cryptolepinone: An oxidation artifact of cryptolepine. J. Nat. Prod., 61, 1528-1530 (1998) https://doi.org/10.1021/np980265f
  8. Fukuda, N., Yonemitsu, M., and Kimura, T., Studies on the constituents of the stems of Tinospora tuberculata BEUM$\acute{E}$E. I. N-trans- and N-cis-feruloyl tyramine, and a new phenolic glucoside, tinotuberide. Chem. Pharm. Bull., 31, 156-161 (1983) https://doi.org/10.1248/cpb.31.156
  9. Gerhauser, C., You, M., Liu, J., Moriarty, R. M., Hawthorne, M., Mehta, R. G., Moon, R. C., and Pezzuto, J. M., Cancer chemopreventive potential of sulforamate, a novel analogue of suforaphane that induces phase 2 drug-metabolizing enzymes. Cancer Res., 57, 272-278 (1997)
  10. Gorlitzer, K. and Ventzke-Neu, K., 10H-Indolo[3,2-b]quinoline-5-oxide (oxyquindoline) and some of its derivatives. Pharmazie, 52, 919-926 (1997).
  11. Gu, J.-Q., Park, E. J., Schunke Vigo, J., Graham, J. G., Fong, H. H. S., Pezzuto, J. M., and Kinghorn, A. D., Activity-guided isolation of constituents of Renealmia nicolaioides with the potential to induce the phase II enzyme quinone reductase. J. Nat. Prod., 65, 1616-1620 (2002) https://doi.org/10.1021/np020249p
  12. Gunatilaka, A. A. L., Sotheeswaran, S., Balasubramaniam, S., Chandrasekara, A. I., and Sriyani, H. T. B., Studies on medicinal plants of Sri Lanka. III: Pharmacologically important alkaloids of some Sida species. Planta Med., 39, 66-72 (1980) https://doi.org/10.1055/s-2008-1074904
  13. Han, B. H., Park, M. H., Han, Y. N., and Manalo, J. B., Studies on the antiinflammatory activity of Aralia continentalis. II. Isolation of two phenolic acids from the hydrolyzate of butanol fraction. Arch. Pharm. Res., 6, 75-77 (1983) https://doi.org/10.1007/BF02855705
  14. Hong, W. K. and Sporn, M. B., Recent advances in chemoprevention of cancer. Science, 278, 1073-1077 (1997) https://doi.org/10.1126/science.278.5340.1073
  15. Huang, Z., Dostal, L., and Rosazza, J. P. N., Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra. J. Biol. Chem., 268, 23954-23958 (1993)
  16. Hussain, S. F., Gozler, B., Shamma, M., and Gozler, T., Feruloyltyramine from Hypecoum. Phytochemistry, 21, 2979-2980 (1982) https://doi.org/10.1016/0031-9422(80)85081-3
  17. Iida, T., Noro, Y., and Ito, K., Magnostellin A and B, novel lignans from Magnolia stellata. Phytochemistry, 22, 211-213 (1983) https://doi.org/10.1016/S0031-9422(00)80091-6
  18. Jang, D. S., Park, E. J., Hawthorne, M. E., Vigo, J. S., Graham, J. G., Cabieses, F., Santarsiero, B. D., Mesecar, A. D., Fong, H. H. S., Mehta, R. G., Pezzuto, J. M., and Kinghorn, A. D., Constituents of Musa x paradisiaca cultivar with the potential to induce the phase II enzyme, quinone reductase. J. Agric. Food Chem., 50, 6330-6334 (2002) https://doi.org/10.1021/jf0206670
  19. Kang, S. Y., Sung, S. H., Park, J. H., and Kim, Y. C., Hepatoprotective activity of scopoletin, a constituent of Solanum lyratum. Arch. Pharm. Res., 21, 718-722 (1998) https://doi.org/10.1007/BF02976764
  20. Kelloff, G. J., Boone, C. W., Malone, W. F., and Steele, V. E., Recent results in preclinical and clinical drug development of chemopreventive agents at the National Cancer Institute. In Wattenberg, L., Lipkin, M., Boone, C. W., and Kelloff, G. J.(Eds.). Cancer Chemoprevention. CRC Press, Boca Raton, FL, pp. 41-56 (1992)
  21. Kennelly, E. J., Gerhauser, C., Song, L. L., Graham, J. G., Beecher, C. W. W., Pezzuto, J. M., and Kinghorn, A. D., Induction of quinone reductase by withanolides isolated from Physalis philadelphica (Tomatillos). J. Agric. Food Chem., 45, 3771-3777 (1997) https://doi.org/10.1021/jf970246w
  22. Kinghorn, A. D., Su, B.-N., Lee, D., Gu, J.-Q., and Pezzuto, J. M., Cancer chemopreventive agents discovered by activityguided fractionation: an update. Curr. Org. Chem., 7, 213-226 (2003) https://doi.org/10.2174/1385272033373003
  23. Lam, L. K. T., Sparnins, V. L., and Wattenberg, L. W., Isolation and identification of kahweol palmitate and cafestol palmitate as active constituents of green coffee beans that enhance glutathione S-transferase activity in the mouse. Cancer Res., 42, 1193-1198 (1982)
  24. Lee, S.-J., Yun, Y.-S., Lee, I.-K., Ryoo, I.-J., Yun, B.-S., and Yoo, I.-D., An antioxidant lignan and other constituents from the root bark of Hibiscus syriacus. Planta Med., 65, 658-660 (1999) https://doi.org/10.1055/s-2006-960841
  25. Long, R. W. and Lakela, O., A Flora of Tropical Florida; A Manual of the Seed Plants and Ferns of Southern Peninsular Florida. University of Miami Press, Coral Gables, FL, pp. 601-602 (1971)
  26. Martin, G. E., Guido, J. E., Robins, R. H., Sharaf, M. H. M., Schiff, P. L., Jr., and Tackie, A. N., Submicro inverse-detection gradient NMR: A powerful new way of conducting structure elucidation studies with <0.05 $\mu$mol samples. J. Nat. Prod., 61, 555-559 (1998) https://doi.org/10.1021/np980099b
  27. Maxuitenko, Y. Y., MacMillan, D. L., Kensler, T. W., and Roebuck, B. D., Evaluations of the post-initiation effects of oltipraz on aflatoxin B1-induced preneoplastic foci in a rat model of hepatic tumorigenesis. Carcinogenesis, 14, 2423-2425 (1993) https://doi.org/10.1093/carcin/14.11.2423
  28. Mehta, R. G. and Moon, R. C., Characterization of effective chemopreventive agents in mammary gland in vitro using an initiation-promotion protocol. Anticancer Res., 11, 593-596 (1991)
  29. Nawwar, M. A. M., Buddrus, J., and Bauer, H., Dimeric phenolic constituents from the roots of Tamarix nilotica. Phytochemistry, 21, 1755-1758 (1982) https://doi.org/10.1016/S0031-9422(82)85054-1
  30. Otsuka, H., Takeuchi, M., Inoshiri, S., Sato, T., and Yamasaki, K., Phenolic compounds from Coix lachryma-jobi var. mayuen. Phytochemistry, 28, 883-886 (1989) https://doi.org/10.1016/0031-9422(89)80136-0
  31. Pezzuto, J. M., Song, L. L., Lee, S. K., Shamon, L. A., Mata-Greenwood, E., Jang, M., Jeong, H.-J., Pisha, E., Mehta, R. G., and Kinghorn, A. D., Bioassay methods useful for activity-guided isolation of natural product cancer chemopreventive agents. In Hostettmann, K., Gupta, M. P., and Marston, A.(Eds.). Chemistry, Biological and Pharmacological Properties of Medicinal Plants from the Americas. Harwood Academic Publishers, Amsterdam, pp. 81-110 (1999)
  32. Prakash, A., Varma, R. K., and Ghosal, S., Chemical constituents of Malvaceae. Part III: Alkaloidal constituents of Sida acuta, S. humilis, S. rhombifolia and S. spinosa. Planta Med., 43, 384-388 (1981) https://doi.org/10.1055/s-2007-971529
  33. Prochaska, H. J., and Santamaria, A. B., Direct measurement of NAD(PH):quinone reductase from cells in microtiter wells: a screening assay for anticarcinogenic enzyme inducers. Anal. Biochem., 169, 328-336 (1988) https://doi.org/10.1016/0003-2697(88)90292-8
  34. Rao, R. V. K., Satyanarayana, T., and Rao, B. V. K., Phytochemical investigations on the roots of Sida acuta growing in Waltair. Fitoterapia, 55, 249-250 (1984)
  35. Su, B.-N., Misico, R., Park, E. J., Santarsiero, B. D., Mesecar, A. D., Fong, H. H. S., Pezzuto, J. M., and Kinghorn, A. D., Isolation and characterization of bioactive principles of the leaves and stems of Physalis philadelphica. Tetrahedron, 58, 3453-3466 (2002) https://doi.org/10.1016/S0040-4020(02)00277-6
  36. Su, B.-N., Park, E. J., Nikolic, D., Santarsiero, B. D., Mesecar, A. D., Vigo, J. S., Graham, J. G., Cabieses, F., Van Breemen, R. B., Fong, H. H. S., Farnsworth, N. R., Pezzuto, J. M., and Kinghorn, A. D., Activity-guided isolation of novel norwithanolides from Deprea subtriflora with potential cancer chemopreventive activity. J. Org. Chem., 68, 2350-2361 (2003) https://doi.org/10.1021/jo020542u
  37. Talalay, P., De Long, M. J., and Prochaska, H. J., Molecular mechanisms in protection against carcinogenesis. In Cory, J. G., and Szentivanyi, A. (Eds.). Cancer Biology and Therapeutics. Plenum Press, New York, NY, pp. 197-216 (1981)
  38. Tanaka, R. and Matsunaga, S., Loliolide and olean-12-en-3$\beta$,9$\alpha$,11-triol from Euphorbia supina. Phytochemistry, 28, 1699-702 (1989) https://doi.org/10.1016/S0031-9422(00)97828-2
  39. Wattenberg, L. W., An overview of chemoprevention: current status and future prospects. Proc. Soc. Exp. Biol. Med., 216, 133-141 (1997) https://doi.org/10.3181/00379727-216-44163
  40. Wettasinghe, M., Shahidi, F., Amarowicz, R., and Abou-Zaid, M. M., Phenolic acids in defatted seeds of borage (Borago officinalis L.). Food Chem., 75, 49-56 (2001) https://doi.org/10.1016/S0308-8146(01)00182-0
  41. Wu, T.-S., Teh, J.-H., and Wu, P.-L., The heartwood constituents of Tetradium glabrifolium. Phytochemistry, 40, 121-124 (1995) https://doi.org/10.1016/0031-9422(95)00248-6
  42. Zhang, Y., Talalay, P., Cho, C.-G., and Posner, G. H., A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl. Acad. Sci. U.S.A., 89, 2399-2403 (1992) https://doi.org/10.1073/pnas.89.6.2399