Abstract
Controlled-release amitriptyline pellets (ATP) were formulated and its oral bioavailability was assessed in human volunteers after oral administration under fasting conditions. Core pellets were prepared using a CF granulator by two different methods (powder layering and solvent spraying) and coated with Eudragit RS or RL 100. Physical characteristics and dissolution rates of core pellets and coated pellets were evaluated to optimize the formulation. Powder layering method resulted in a better surface morphology than solvent spraying method. However, physical properties of the products were poorer when prepared by powder layering method with respect to hardness, friability and density. The dissolution profile of amitriptyline coated with Eudragit RS 100 was comparable to that of commercially available amitriptyline enteric-coated pellets ($Saroten^{\circledR}$ retard). After the oral administration of both products at the dose of 50 mg, the mean maximum concentrations ($C_{max}$) were 36.4 and 29.7 ng/mL, and the mean areas under the concentration-time curve ($AUC_{0-96}$) were 1180.2 and 1010.7 ng.h/mL for ATP and Saroten retard, respectively. The time to reach the maximum concentrations ($T_{max}$) was 6 h for both formulations. Statistical evaluation suggested that ATP was bioequivalent to Saroten retard.