Enhanced Ex Vivo Buccal Transport of Propranolol: Evaluation of Phospholipids as Permeation Enhancers

  • Lee, Jae-Hwi (Department of Industrial and Physical Pharmacy, School of Pharmacy, Purdue University) ;
  • Choi, Young-Wook (College of Pharmacy, Chung-Ang University)
  • Published : 2003.05.01

Abstract

The aim of the present study was to evaluate the effects of two phospholipid permeation enhancers, lysophosphatidylcholine (LPC) and didecanoylphosphatidylcholine (DDPC), along with a fusidic acid derivative, sodium taurodihydrofusidate (STDHF) and ethanol (EtOH) on the buccal transport of propranolol hydrochloride (PPL) using an ex vivo buccal diffusion model. The permeation rate of [$^3 H$]PPL as measured by steady-state fluxes increased with increasing EtOH concentration. A significant flux enhancement (P<0.05) was achieved by EtOH at 20 and 30 %v/v concentrations. At a 0.5 %w/v permeation enhancer concentration, the buccal permeation of [$^3 H$]PPL was significantly enhanced by all the enhancers studied (i.e., LPC, DDPC and STDHF) compared to the control (phosphate-buffered saline pH 7.4, PBS). LPC and DDPC displayed a greater degree of permeation enhancement compared with STDHF and EtOH-PBS mixtures with an enhancement ratio of 3.2 and 2.9 for LPC and DDPC, respectively compared with 2.0 and 1.5 for STDHF and EtOH:PBS 30:70 %v/v mixture, respectively. There was no significant difference between LPC and DDPC for the flux values and apparent permeability coefficients of [$^3$H]PPL. These results suggest that phospholipids are suitable as permeation enhancers for the buccal delivery of drugs.

Keywords

References

  1. Anders, R. and Merkle, H. P., Evaluation of laminated mucoadhesive patches for buccal drug delivery. Int. J. Pharm., 49, 231-240 (1989) https://doi.org/10.1016/0378-5173(89)90347-5
  2. Aungst, B. J., Rogers, N. J., and Shefter, E., Comparison of nasal, rectal, buccal, sublingual and intramuscular insulin efficacy and the effects of a bile salt absorption promoter. J. Pharmacol. Exp. Ther., 24, 23-27 (1988)
  3. Aungst, B. J. and Rogers, N. J., Comparison of the effects of various transmucosal absorption promoters on buccal insulin delivery. Int. J. Pharm., 53, 227-235 (1989) https://doi.org/10.1016/0378-5173(89)90316-5
  4. Bolin, T., Franzen, L., Sjodahl, R., and Tagesson, C., Passage of molecules through the wall of the gastrointestinal tract. Scand. J. Gastroenterol., 21, 441-448 (1986) https://doi.org/10.3109/00365528609015160
  5. Chidambaram, N. and Srivatsava, A. K., Buccal drug delivery systems. Drug Dev. Ind. Pharm., 21, 1009-1036 (1995) https://doi.org/10.3109/03639049509069802
  6. Cid, E., Mella, F., Lucchini, L., Carcamo, M., and Monasterio, J., Plasma concentrations and bioavailability of propranolol by oral, rectal and intravenous administration in man. Biopharm. Drug Dispos., 7, 559-566 (1986) https://doi.org/10.1002/bdd.2510070605
  7. Coutel-Egros, A., Maitani, Y., Veillard, M., Machida, Y., and Nagai, T., Combined effects of pH, cosolvent and penetration enhancers on the in vitro buccal absorption of propranolol through excised hamster cheek pouch. Int. J. Pharm., 84, 117-128 (1992) https://doi.org/10.1016/0378-5173(92)90052-4
  8. DeGrande, G., Benes, L., Horriere, F., Karsenty, H., Lacoste, C., McQuinn, R., Gou, J.-H., and Scherrer, R., Specialized oral mucosal drug delivery systems: Patches, In Rathbone, M.J. (Eds.). Oral Mucosal Drug Delivery. Marcel Dekker, New York, pp. 285-317, (1996)
  9. De Vries, M. E., Bodde, H. E., Verhoef, J. C., and Junginger, H. E., Developments in buccal drug delivery. Crit. Rev. Therap. Drug Carr. Syst., 8, 271-303 (1991)
  10. Dowty, M. E., Knuth, K. E., Irons, B. K., and Robinson, J. R., Transport of thyrotropin releasing hormone in rabbit buccal mucosa in vitro. Pharm. Res., 9, 1113-1122 (1992) https://doi.org/10.1023/A:1015883217858
  11. Fisher, A. N., Farraj, N. F., OHagan, D. T., Jabbal-Gill, I., Johansen, B. R., Davis, S. S., and Illum, L., Effect of L-$\alpha$-lysophosphatidylcholine on the nasal absorption of human growth hormone in three animal species. Int. J. Pharm., 74, 147-156 (1991) https://doi.org/10.1016/0378-5173(91)90231-C
  12. Ganem-Quintanar, A., Kalia, Y. N., Falson-Rieg, F., and Buri, P., Mechanism of oral permeation enhancement. Int. J. Pharm., 156, 127-142 (1997) https://doi.org/10.1016/S0378-5173(97)00193-2
  13. Harris, D. and Robinson, J. R., Drug delivery via the mucous membranes of the oral cavity. J. Pharm. Sci., 81, 1-10 (1992) https://doi.org/10.1002/jps.2600810102
  14. Hermens, W. A. J. J., Hooymans, P. M., Verhoef, J. C., and Merkus, F. W. H. M., Effects of absorption enhancers on human nasal tissue ciliary movement in vitro. Pharm. Res., 7, 144-146 (1990) https://doi.org/10.1023/A:1015872617511
  15. Hirai, S., Yashiki, T., and Mima, H., Effect of surfactants on the nasal absorption of insulin in rats. Int. J. Pharm., 9, 165-172 (1981) https://doi.org/10.1016/0378-5173(81)90009-0
  16. Hovgaard, L., Brondsted, H., and Nielsen, H. M., Drug delivery studies in Caco-2 monolayers. II. Absorption enhancer effects of lysophosphatidylcholines. Int. J. Pharm., 114, 141-149 (1995) https://doi.org/10.1016/0378-5173(94)00232-T
  17. Iwamoto, K. and Watanabe, J., Dose-dependent presystemic elimination of propranolol due to hepatic first-pass metabolism in rats. J. Pharm. Pharmacol., 37, 826-828 (1985) https://doi.org/10.1111/j.2042-7158.1985.tb04979.x
  18. Kissel, T., Drewe, J., Bantle, S., Rummelt, A., and Beglinger, C., Tolerability and absorption enhancement of intranasally administered octreotide by sodium taurodihydrofusidate in healthy subjects. Pharm. Res., 9, 52-57 (1992) https://doi.org/10.1023/A:1018927710280
  19. Le Brun, P. P. H., Fox, P. L. A., De Vries, M. E., and Bodde, H. E., In vitro penetration of some $\beta$-adrenoreceptor blocking drugs through porcine buccal mucosa. Int. J. Pharm., 49, 141-145 (1989) https://doi.org/10.1016/0378-5173(89)90113-0
  20. Lee, J. and Kellaway, I. W., Buccal permeation of [D-$Ala^2$, D-$Leu^5$] enkephalin from liquid crystalline phases of glyceryl monooleate. Int. J. Pharm., 195, 35-38 (2000) https://doi.org/10.1016/S0378-5173(99)00357-9
  21. Lee, J., Lee, S. K., and Choi, Y. W., The effect of storage conditions on the permeability of porcine buccal mucosa. Arch. Pharm. Res., 25, 546-549 (2002) https://doi.org/10.1007/BF02976616
  22. Parfitt, K., Martindale (32nd edition). Pharmaceutical Press, London, (1999)
  23. Richardson, J. L., Minhas, P. S., Thomas, N. W., and Illum, L., Vaginal administration of gentamicin to rats. Pharmaceutical and morphological studies using absorption enhancers. Int. J. Pharm., 56, 29-35 (1989) https://doi.org/10.1016/0378-5173(89)90057-4
  24. Schurmann, W. and Turner, P., A membrane model of the human oral mucosa as derived from buccal absorption performance and physicochemical properties of the $\beta$-blocking drugs atenolol and propranolol. J. Pharm. Pharmacol., 30, 137-147 (1978) https://doi.org/10.1111/j.2042-7158.1978.tb13185.x
  25. Senel, S. and Hincal, A. A., Drug permeation enhancement via buccal route: possibilities and limitations. J. Control. Rel., 72, 133-144 (2001) https://doi.org/10.1016/S0168-3659(01)00269-3
  26. Shand, D. G., Nickolis, E. M., and Oates, J. A., Plasma propranolol levels in adults with observation in four children. Clin. Pharmacol. Ther., 11, 112-118 (1970) https://doi.org/10.1002/cpt1970111112
  27. Vermehren, C. and Hansen, H. S., Shape changes in the erythrocyte membrane induced by the absorption enhancer didecanoylphosphatidylcholine. Int. J. Pharm., 174, 1-8 (1998) https://doi.org/10.1016/S0378-5173(98)00187-2
  28. Walle, T., Conradi, E. C., Walle, U. K., Fagan, T. C., and Gaffney, T. E., The predictable relationship between plasma levels and dose during chronic propranolol therapy. Clin. Pharmacol. Ther., 24, 668-677 (1978) https://doi.org/10.1002/cpt1978246668
  29. Wertz, P. W. and Squier, C. A., Cellular and molecular basis of barrier function in oral epithelium. Crit. Rev. Therap. Drug Carr. Syst., 8, 237-269 (1991)
  30. Zhang, J., Niu, S., Ebert, C., and Stanley, T. H., An in vivo dog model for studying recovery kinetics of the buccal mucosa permeation barrier after exposure to permeation enhancers: apparent evidence of effective enhancement without tissue damage. Int. J. Pharm., 101, 15 22 (1994) https://doi.org/10.1016/0378-5173(94)90071-X