Antioxidative Properties of Brown Algae Polyphenolics and Their Perspectives as Chemopreventive Agents Against Vascular Risk Factors

  • Kang, Keejung (Laboratory of Aging and Degenerative Diseases, Hanbat National University) ;
  • Park, Yongju (Laboratory of Aging and Degenerative Diseases, Hanbat National University) ;
  • Hwang, Hye-Jeong (Laboratory of Aging and Degenerative Diseases, Hanbat National University) ;
  • Kim, Seong-Ho (Laboratory of Aging and Degenerative Diseases, Hanbat National University) ;
  • Lee, Jeong-Gu (Department of Urology, Korea University, Anam Hospital) ;
  • Shin, Hyeon-Cheol (Laboratory of Aging and Degenerative Diseases, Hanbat National University)
  • Published : 2003.04.01

Abstract

Several polyphenolic compounds and complex mixtures were isolated from brown algae species. The 1,1-diphenyl-2-picryhydarzyl (DPPH) radical scavenging activity and ferric reducing antioxidant power (FRAP) of these compounds were evaluated to determine their physiological usefulness as antioxidants for vascular protection. The antioxidative protection of low-density lipoprotein (LDL) was also evaluated and compared with that of catechin, because the generation of oxidized LDL is one of the most active and specific risk factors contributing to atherogenesis. Oral administration to rats of a commercially available sample ($VNP^{TM}$) containing 30% of these polyphenolic compounds and 70% dietary fiber revealed that the serum reducing capacity measured in terms of FRAP value was significantly elevated 30 min after the treatment, but declined rather quickly thereafter, indicating the good oral absorption of the compounds and their fast binding to the lumenal surface of the blood vessels. An eight-week, human, clinical trial (n=31) of $VNP^{TM}$ showed significant improvement in erectile function measured by IIEF (international index of erectile function) score. These results collectively demonstrated the usefulness of these polyphenolic compounds as fundamental chemopreventive agents against vascular risk factors originating from oxidative stress.

Keywords

References

  1. Azadzoi, K. M. and Goldstein, I., Erectile dysfunction due to atherosclerotic vascular disease: the development of an animal model. J. Urol., 147, 1675-1682 (1992)
  2. Azadzoi, K. M. and Tejada, I. S., Diabetes mellitus impairs neurogenic and endothelium-dependent relaxation of rabbit corpus cavernosum smooth muscle. J. Urol., 148, 1587-1597 (1992)
  3. Benzie, I. F. F. and Strain, J. J., Ferric reducing antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol., 299, 15-27 (1999) https://doi.org/10.1016/S0076-6879(99)99005-5
  4. Benzie, I. F. F. and Strain, J. J., The Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem., 239, 70-76 (1996) https://doi.org/10.1006/abio.1996.0292
  5. Benzie, I. F. F. and Szeto, Y. T., Total antioxidant capacity of teas by the Ferric reducing antioxidant power assay. J. Agric. Food Chem., 47, 633-636 (1997) https://doi.org/10.1021/jf9807768
  6. Blois, M. S., Antioxidant determinations by the use of a stable free radical. Nature, 26, 1199-1200 (1958)
  7. Buege, J. A. and Aust, S. D., Microsomal Lipid Peroxidation, Methods in Enzymol., 52, 302-310 (1987)
  8. Burns, J., Gardner, P. T., McPhail, D. B., ONeil, J., Crawford,S., Morecroft, I., Lister, C., Matthews, D., MacLean, M. R.,Lean, M. E. J., Duthie, G. G., and Crozier, A., Antioxidant activity, vasodilation capacity and phenolic content of red wines. J. Agric. Food Chem., 48, 220-230 (2000) https://doi.org/10.1021/jf9909757
  9. Buvat, J., Lemaire, A., and Buvat-Herbaut, M., Comparative investigations in 26 impotent, 26 non-impotent diabetic patients. J. Urol., 133, 34 (1985)
  10. Cao, G., Sofic, E., and Prior, R. L., Antioxidant capacity of tea and common vegetables. J. Agric. Food Chem., 44, 3426-3431 (1996) https://doi.org/10.1021/jf9602535
  11. Caterina, R. D., Endothelial dysfunctions : common denominators in vascular disease. Curr. Opin. Lipidol., 3, 453-67 (2000)
  12. Deighton, N., Brennan, R., Finn, C., and Davies, H. V., Antioxidant properties of domesticated and wild Rubus species. J. Agric. Food Chem., 80, 1307-1313 (2000) https://doi.org/10.1002/1097-0010(200007)80:9<1307::AID-JSFA638>3.0.CO;2-P
  13. Diaz, M. N., Frei, B., Vita, J. A., and Keaney Jr. J., Antioxidants and atherosclerotic heart disease. N. Engl. J. Med., 337, 408-416 (1997) https://doi.org/10.1056/NEJM199708073370607
  14. Harrison, D. G., Cellular and molecular mechanisms of endothelial cell dysfunction. J. Clin. Invest., 100, 2153-2157 (1997) https://doi.org/10.1172/JCI119751
  15. Fawcett, D. W., A Textbook of Histology. Chapman & Hall, New York. (1994)
  16. Fukuyama, Y., Kodama, M., Miura, I., Kinzyo, Z., Mori, H., Nakayama, Y., and Takahashi, M., Structure of an anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome Okamura and inhibitory activities of its derivatives on plasma plasmin inhibitors. Chemical & Pharmaceutical Bulletin, 37(2), 349-353 (1989) https://doi.org/10.1248/cpb.37.349
  17. Fukuyama, Y., Kodama, M., Miura, I., Kinzyo, Z., Mori, H., Nakayama, Y., and Takahashi, M., Anti-plasmin inhibitor. VI. Structure of phlorofurofukoeckol A, a novel phlorotannin with both dibenzo-1,4-dioxin and dibenzofuran elements, from Ecklonia kurome Okamura. Chem. Pharma. Bulletin, 38(1), 133-135 (1990) https://doi.org/10.1248/cpb.38.133
  18. Gil, A., Martinez, E., Oyaguez, I., Palacios, G., and Rejas, J., Erectile dysfunction in a primary care setting: results of an observational, no-control-group, prospective study with sildenafil under routine conditions of use. Int. J. Imp. Res., 12, 338-47 (2001)
  19. Halliwell, B. and Gutteridge, J. M., Biologically relevant metal ion-dependent hydroxyl radical generation. an update. FEBS Lett., 307, 108112 (1992) https://doi.org/10.1016/0014-5793(92)80911-Y
  20. Haslam, E., Natural Polyphenols (Vegetable Tannins) as Drugs: Possible Modes of Action. J. Nat. Prod., 59, 205-215 (1996) https://doi.org/10.1021/np960040+
  21. Heinecke, J. W., Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis,141, 115 (1998)
  22. Hurt, K. J., Musicki., B., Palese, M. A., Crone, J. K., Becker, R. E., Moriarity, J. L., Snyder, S. H., and Burnett, A. L., Aktdependent phosphorylation of endothelial nitric-oxide synthase mediates penile erection. Proc. Nat. Acad. Sci. USA, 99, 4061-4066 (2002) https://doi.org/10.1073/pnas.052712499
  23. Kris-Etherton, P. M., A new role for diet in reducing the incidence of cardiovascular disease: evidence from recent studies. Curr Atheroscler Rep., 1(3),185-187 (1999) https://doi.org/10.1007/s11883-999-0030-x
  24. Laparra, J., Michaud, J., and Masquelier, J., A pharmacokinetic study on oligomeric flavonoids. Plant Med. Phytother., 11, 1331-1342 (1977)
  25. Lee, J. Y., Moon, K. H., and Park, T. C., The assessment of sexual function in men who visited health screening center: a study using the Korean version of IIEF (international index of erectile function) questionnaire. Korean J. Urol., 42, 334-40 (2001)
  26. Massey, L. K., Dairy food consumption, blood pressure and stroke. J. Nutr., 131(7), 1875-1878 (2001)
  27. Ng, T. B., Liu, F., and Wang, Z. T., Antioxidative activity of natural products from plants. Life Sci., 66, 709-723 (2000) https://doi.org/10.1016/S0024-3205(99)00642-6
  28. Parthasarathy, S., Santanam, N., and Ange, N., Oxidised lowdensity lipoprotein, a two-faced Janus in coronary artery disease. Biochem. Pharmacol., 56, 279-284 (1998) https://doi.org/10.1016/S0006-2952(98)00074-4
  29. Pietta, P., Simonetti, P., and Mauri, P., Antioxidant activity of selected medicinal plants. J. Agric. Food Chem., 46, 4487-4490 (1998) https://doi.org/10.1021/jf980310p
  30. Proteggente, A. R., Pannala, A. S., Paganga, G., van Buren, L., Wagner, S., Wiseman, F., van de Put., Dacombe, C., and Rice-Evans, The antioxidant activity of regularly consumed fruit and vegetables reflect their phenolic and vitamin C composition. Free Radical Res., 36, 217-233 (2002) https://doi.org/10.1080/10715760290006484
  31. Rosen, R. C., Riley, A., Wagner, G., Osterloh, I. H., Kirkpatrick, J., and Mishra, A., The international index of erectile function (IIEF): a multidimensional scale for assessment of erectile dysfunction. Urology, 49, 822-830 (1997) https://doi.org/10.1016/S0090-4295(97)00238-0
  32. Ross, R., Atherosclerosis-an inflammatory disease. N. Engl J. Med., 340, 115-126 (1999) https://doi.org/10.1056/NEJM199901143400207
  33. Sawamura, T., Kume, N., Aoyama, T., Moriwaki, H., Hoshikawa, H., Aiba, Y., Tanaka, T., Miwa, S., Katsura, Y., Kita, T., and Masaki, T., An endothelial receptor for oxidized low-density lipoprotein. Nature, 386, 73-77 (1997) https://doi.org/10.1038/386073a0
  34. Schlesier, K., Harwat, M., Bo´hm, V., and Bitsch, R., Assessment of antioxidant activity by using different in vitro methods. Free Radical Res., 36, 177-187 (2002) https://doi.org/10.1080/10715760290006411
  35. Scott, B. C., Butler, J., Halliwell, B., Aruoma, O. I., Evaluation of the antioxidant actions of ferulic acid and catechins. Free Radical Res. Commun., 19, 241-253 https://doi.org/10.3109/10715769309056512
  36. Steinberg, D., Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem., 272, 20963-20966 (1997) https://doi.org/10.1074/jbc.272.34.20963
  37. Steinbrecher, U. P., Receptors for oxidized low density lipoprotein. Biochem. Biophys. Acta., 1436, 279-298 (1999) https://doi.org/10.1016/S0005-2760(98)00127-1
  38. Stohs, S. J. and Bagchi, D., Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med., 18, 321-336 (1995) https://doi.org/10.1016/0891-5849(94)00159-H
  39. Swanson, A. K. and Druehl, L. D., Induction, exudation and the UV protective role of kelpphlorotannins. Aquatic Botany, 73, 241-253 (2002) https://doi.org/10.1016/S0304-3770(02)00035-9
  40. Usui, M., Matsuoka, H., Koga, Y., Iida, S., Fukami, K., Okuda, S., Kato, S., and Imaizumi, T., Endothelial dysfunction in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): role of oxidative stress. Hypertension, 34, 341 (1999)
  41. Velioglu, Y. S., Mazza, G., Cao, L., and Oomah, B. D., Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem., 45, 4113-4117 (1998)
  42. Wever, R. M., Luscher, T. F., Cosentino, F., and Rabelink, T. J., Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation, 97, 108-112 (1998) https://doi.org/10.1161/01.CIR.97.1.108