Effects of Ginsenosides on $GABA_A$ Receptor Channels Expressed in Xenopus Oocytes

  • Choi, Se-Eun (Department of Physiology, College of Veterinary Medicine Konkuk University) ;
  • Choi, Seok (Department of Physiology, College of Veterinary Medicine Konkuk University) ;
  • Lee, Jun-Ho (Department of Physiology, College of Veterinary Medicine Konkuk University) ;
  • Paul J.Whiting (Merck Sharp & Dohme Research Lab., Neuroscience Research Center) ;
  • Lee, Sang-Mok (Department of Physiology, College of Veterinary Medicine Konkuk University) ;
  • Nah, Seung-Yeol (Department of Physiology, College of Veterinary Medicine Konkuk University)
  • Published : 2003.01.01

Abstract

Ginsenosides, major active ingredients of Panax ginseng, are known to regulate excitatory ligand-gated ion channel activity such as nicotinic acetylcholine and NMDA receptor channel activity. However, it is not known whether ginsenosides affect inhibitory ligand-gated ion channel activity. We investigated the effect of ginsenosides on human recombinant $GABA_A$ receptor (${\alpha}_1{\beta}_1{\gamma}_{2s}$) channel activity expressed in Xenopus oocytes using a two-electrode voltage-clamp technique. Among the eight individual ginsenosides examined, namely, $Rb_1$, $Rb_2$, Rc, Rd, Re, Rf, $Rg_1$ and $Rg_2$, we found that Rc most potently enhanced the GABA-induced inward peak current ($I_{GABA}$). Ginsenoside Rc alone induced an inward membrane current in certain batches of oocytes expressing the $GABA_A$ receptor. The effect of ginsenoside Rc on $I_{GABA}$ was both dose-dependent and reversible. The half-stimulatory concentration ($EC_{50}$) of ginsenoside Rc was 53.2$\pm$12.3 $\mu$M. Both bicuculline, a $GABA_A$ receptor antagonist, and picrotoxin, a $GABA_A$ channel blocker, blocked the stimulatory effect of ginsenoside Rc on $I_{GABA}$. Niflumic acid (NFA) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), both $CI^{-1}$ channel blockers, attenuated the effect of ginsenoside Rc on I$I_{GABA}$. This study suggests that ginsenosides regulated $GABA_A$ receptor expressed in Xenopus oocytes and implies that this regulation might be one of the pharmacological actions of Panax ginseng.

Keywords

References

  1. Abe, K., Cho, S. I., Kitagawa, I., Nishiyama, N., and Saito, H. Differential effects of ginsenoside $Rb_1$ and malonylginsenoside $Rb_2$ on long-term potentiation in the dentate gyrus of rat. Brain Res., 649, 7-11 (1994) https://doi.org/10.1016/0006-8993(94)91042-1
  2. Attele, A. S., Wu, J. A., and Yuan, C. S. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol., 58, 1685-1693 (1999) https://doi.org/10.1016/S0006-2952(99)00212-9
  3. Bloom, F., Iversen, L. L., Localizing $[^3H]$GABA in the nerve terminals of rat cerebral cortex by electron microscopic autoradiography. Nature, 229, 628-630 (1971) https://doi.org/10.1038/229628a0
  4. Choi, S., Kim, H. J., Ko, Y. S., Jeong, S. W., Kim, Y. I., Simonds, W. F., Oh, J. W., Nah, S.Y. $G\alpha_{q/11}$ coupled to mammalian phospholipase C $\beta3$-like enzyme mediates the ginsenoside effect on $Ca^{2+}$-activated Cl- current in the Xenopus oocyte. J Biol. Chem., 276, 48797-802 (2001) https://doi.org/10.1074/jbc.M104346200
  5. Choi, S., Jung, S. Y., Lee, J. H., Sala, F., Criado, M., Mulet, J., Valor, L. M., Sala, S., Engel, A. G., and Nah, S. Y. Effects of ginsenosides, active components of ginseng, on nicotinic acetylcholine receptors expressed in Xenopus oocytes. Eur. J. Pharmacol., 442, 37-45 (2002) https://doi.org/10.1016/S0014-2999(02)01508-X
  6. Dascal, N. The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem., 22, 317-387 (1987) https://doi.org/10.3109/10409238709086960
  7. Frings, S., Reuter, D., and Kleene, S. J. Neuronal $Ca^{2+}$-activated Cl- channels homing in on an elusive channel species. Prog. Neurobiol., 60, 247-289 (2000) https://doi.org/10.1016/S0301-0082(99)00027-1
  8. Hill-Venning, C., Belelli, D., Peters, J. A., and Lambert, J. J. Subunit dependent interaction of the general anaesthetic etomidate with the $\gamma$-aminobutyric acid $type_A$ receptor. Br. J. Pharmacol., 120, 749-756 (1997) https://doi.org/10.1038/sj.bjp.0700927
  9. Kim, H. S., Hwang, S. L., Nah, S. Y., and Oh, S. Changes of $[^3H]$MK-801, $[^3H]$muscimol and $[^3H]$flunitrazepam binding in rat brain by the prolonged ventricular infusion of ginsenoside Rc and $Rg_1$. Pharmacol. Res., 43, 473-9 (2001) https://doi.org/10.1006/phrs.2001.0809
  10. Kim, S., Ahn, K., Oh, T. H., Nah, S. Y., and Rhim, H. Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons. Biochem. Biophysical Res. Comm., 296, 247-254 (2002) https://doi.org/10.1016/S0006-291X(02)00870-7
  11. Kim, Y. C., Kim, S. R., Markelonis, G. J. and Oh, T. H. Ginsenosides $Rb_1$ and $Rg_3$ protect cultured rat cortical cells from glutamate-induced neurodegeneration. J. Neurosci. Res., 53, 426-432 (1998) https://doi.org/10.1002/(SICI)1097-4547(19980815)53:4<426::AID-JNR4>3.0.CO;2-8
  12. Kimura, T., Saunders, P. A., Kim, H. S., Rheu, H. M., Oh, K. W., and Ho, I. K., Interactions of ginsenosides with ligandbindings of $GABA_A$ and $GABA_B$ receptors. Gen. Pharmacol., 25, 193-9 (1994) https://doi.org/10.1016/0306-3623(94)90032-9
  13. Krishek, B. J., Moss, S. J., and Smart, T. G., A functional comparison of the antagonists bicuculline and pocrotoxin at recombinant $GABA_A$ receptors. J. Neurochem., 36, 1289-1298 (1996) https://doi.org/10.1111/j.1471-4159.1981.tb01731.x
  14. Kudo, K., Tachikawa, E., Kashimoto, T., and Takahashi, E. Properties of ginseng saponin inhibition of catecholamine secretion in bovine chromaffin cells. Eur. J. Pharmacol., 341, 139-144 (1998) https://doi.org/10.1016/S0014-2999(97)01350-2
  15. Macdonald, R. L., and Olsen, R. W., $GABA_A$ receptor channels. Ann. Rev. Neurosci., 17, 569-602 (1994) https://doi.org/10.1146/annurev.ne.17.030194.003033
  16. McCabe, R. T., and Wamsley, J. K., Autoradiographic localization of subcomponents of the macromolecular $GABA_A$ receptor complex. Life Sci., 39, 1937-45 (1986) https://doi.org/10.1016/0024-3205(86)90317-6
  17. Ortells, M. O. and Lunt, G.. G. Evolutionary history of the ligandgated ion channel superfamily of receptors. Trends Neurosci., 18, 121-127 (1995) https://doi.org/10.1016/0166-2236(95)93887-4
  18. Sala, F., Mulet, J., Choi, S., Jung, S. Y., Nah, S. Y., Rhim, H., Valor, L. M., Criado, M., and Sala, S. Effects of ginsenoside $Rg_2$ on human neuronal nicotinic acetylcholine receptors. J. Pharmacol. Exp. Ther., 301, 1052-1059 (2002) https://doi.org/10.1124/jpet.301.3.1052
  19. Seong, Y. H., Shin, C. H., Kim, H. S. and Baba A. Inhibitory effect of ginseng total saponins on glutamate-induced swelling of cultured astrocytes. Biol. Pharm. Bull., 18, 1776-1778 (1995) https://doi.org/10.1248/bpb.18.1776
  20. Tachikawa, E., Kudo, K., Harada, K., Kashimoto, T., Miyate, Y., Kakizaki, A., and Takahashi, E. Effects of ginseng saponins on responses induced by various receptor stimuli. Eur. J. Pharmacol., 369, 23-32 (1999) https://doi.org/10.1016/S0014-2999(99)00043-6
  21. Whiting, P. J., McKernan, R. M., Wafford, K. A. Structure and pharmacology of vertebrate GABA-A receptor subtypes. Int. Rev. Neurobiol., 38, 95-138 (1995) https://doi.org/10.1016/S0074-7742(08)60525-5