Effect of the Crude Polysaccharides Fraction from Eleutherococcus senticosus as a Immunoadjuvant to Soluble Antigens (BSA and OVA)

오가피 조다당의 단백질 항원 (BSA and OVA)에 대한 면역증강효과

  • Published : 2003.06.01

Abstract

Eleutherococcus senticosus is a typical oriental folk medicinal herb. It has been used clinically as a anti-rheumatic disease, anti-stress, ischemic heart disease and gastric ulcer. In the present study, we examined the adjuvant activity of the crude polysaccharides fraction from Eleutherococcus senticosus, EN-3, on the induction of humoral and cellular immune responses against bovine serum albumin (BSA) or ovalbumin (OVA). The thioglycollate-induced macrophages and silica-induced dendritic-like cells cultured with BSA and EN-3 synergistically increased the production of TNF-$\alpha$ and IL-12. When mice were subcutaneously immunized with BSA + EN-3, the antibody titer against BSA was showed significantly higher than those immunized with BSA alone. In addition, when mice were immunized with OVA + FIA + EN-3, the antibody titer was showed similar patterns with the FCA. The assay for determining subisotype of antibody revealed that EN-3 augmented OVA-specific antibody titer of IgG1 and IgG2b. The culture supernatant obtained from splenocytes of mice treated with OVA + FIA + EN-3 also showed a higher level of both OVA-specific Th1-type (IL-2, IFN-${\gamma}$ and GM-CSF) and Th2-type cytokine (IL-4, IL-6 and IL-10). In vitro analysis of T cell proliferation to OVA on 8 weeks, the splenocytes of mice treated with OVA + EN-3 showed a significantly higher proliferating activity than those treated with OVA alone. These results suggest that EN-3 may possess adjuvant activities to potentially to enhance humoral as well as cellular immune response.

Keywords

References

  1. Vaccine v.10 Synthetic immunoadjuvants : application to nonspecific host stimulation and potentiation of vaccine immunogenicity Azuma, I. https://doi.org/10.1016/0264-410X(92)90108-V
  2. Rev. Infec. Dis. v.2 Vaccine adjuvants Edelman, R. https://doi.org/10.1093/clinids/2.3.370
  3. Scand J. Immunol. v.23 The adjuvant activity of nonionic block polymer surfactants. III. Characterization of selected biologically active surfaces Hunter, R. L.;Bennett, B. https://doi.org/10.1111/j.1365-3083.1986.tb01970.x
  4. Immunol. Today v.14 Adjuvants: current status, clinical perspectives and future prospects Audibert, F. M.;Lise, L. D. https://doi.org/10.1016/0167-5699(93)90046-N
  5. Vaccine v.13 Adjuvant for human vaccines-current status, problems and future prospects Gupta, R. K.;Siber, G. R. https://doi.org/10.1016/0264-410X(95)00011-O
  6. J. Immunological Method v.153 A comparison of commercially available adjuvants for use in research Bennet, B.;Check, I. J.;Olsen, M. R.;Hunter, P. L. https://doi.org/10.1016/0022-1759(92)90302-A
  7. Vaccine v.13 Effects of muramyl dipeptide derivatives as adjuvants on the induction of antibody response to recombinant hepatitis B surface antigen Tamura, M.;Yoo, Y. C.;Yoshimatsu, K.;Yoshida, R.;Oka, T.;Ohkuma, K.;Arikawa, J.;Azuma, I. https://doi.org/10.1016/0264-410X(95)80015-6
  8. Lancet v.27 Use of adjuvant containing mycobacterial cell-wall skeleton, monophosphoryl lipid A, and squalane in malaria circumsporozoite protein vaccine Rickman, L. S.;Gordon, D. M.;Wistar, R. Jr.;Krzych, U.;Gross, M.;Hollingdale, M. R.;Egan, J. E.;Chulay, J. D.;Hoffman, S. L.
  9. J. Immunol. v.462 Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex Kensil, C. R.;Patel, U.;Lennick, M.;Marciani, D.
  10. Vaccine v.11 Adjuvants - a balance between toxicity and adjuvanticity Gupta, R. K.;Relyveld, E. H.;Lindblad, E. B.;Bizzini, B.;Ben-Efraim, S.;Gupta, C. K. https://doi.org/10.1016/0264-410X(93)90190-9
  11. Clin. Immunol. v.97 Immunomodulation of rat serum and mucosal antibody responses to Entamoeba histolytica trophozoites by beta-1,3-glucan and cholera toxin Navarro-Garcia, F.;Pedroso, M.;Lopez-Revilla, R. https://doi.org/10.1006/clim.2000.4918
  12. J. Ethnopharmacol. v.72 Eleutherococcus senticosus Maxim. (Araliaceae) as an adaptogen: a closer look Davydov, M.;Krikorian, A. D. https://doi.org/10.1016/S0378-8741(00)00181-1
  13. J. Ethnopharmacol. v.79 Effect of Acanthopanax senticosus stem on mast cell-dependent anaphylaxis Yi, J. M.;Hong, S. H.;Kim, J. H.;Kim, H. K.;Song, H. J.;Kim, H. M. https://doi.org/10.1016/S0378-8741(01)00403-2
  14. Phytother. Res. v.14 Antioxidant and hepatoprotective effects of Acathopanax senticosus Lin, C. C.;Huang, P. C. https://doi.org/10.1002/1099-1573(200011)14:7<489::AID-PTR656>3.0.CO;2-G
  15. Korean J. Food Sci. Technol. v.34 Effect of hot water extract from Acanthopanax senticosus on systemic anaphylaxis Yoon, T. J.;Lee, S. W.;Shin, K. S.;Choi, W. H.;Hwang, S. H.;Seo, S. H.;Kim, S. H.;Park, W. M.
  16. Chinese J. Cancer v.3 Antitumor and immunological activities of Acanthopanax senticosus (Rupr. et Maxim.) Harms polysaccharides Cheng, X. J.;Li, P. Z.;Sheng, X. H.;Li, B. J.;Zhu, C. L.
  17. Phytother. Res. v.15 The synthesis of Rantes, G-CSF, IL-4, IL-5, IL-6, IL-12 and IL-13 in human whole-blood cultures is modulated by an extract from Eleutherococcus senticosus L. roots Schmolz, M. W.;Sacher, F.;Aicher, B. https://doi.org/10.1002/ptr.746
  18. Arzneimittelforschung v.51 Immunopharmacological in vitro effects of Eleutherococcus senticosus extracts Steinmann, G. G.;Esperester, A.;Joller, P.
  19. Arzneimittelforschung v.37 Flow-cytometric studies with Eleutherococcus senticosus extract as an immunomodulatory agent Bohn, B.;Nebe, C. T.;Birr, C.
  20. Sov. Med. v.5 Immunomodulating action of an Eleuterococcus extract in oncologic patients Kupin, V. I.;Polevaia, E. B.;Sorokin, A. M.
  21. Induction and Collection of Peritoneal Exudates Macrophages Manual of macrophage methodology Herscowitz, B. H.;Holden, H. T.;Bellanti, J. A.;Ghaffar, A.
  22. Cancer Res. v.62 Increased vaccination efficiency with apoptotic cells by silica-induced, dendritic-like cells Masse, D.;Voisine, C.;Henry, F.;Cordel, S.;Barbieux, L.;Josien, R.;Meflah, K.;Gregoire, M.;Lieubeau, B.
  23. Vaccine v.6 Induction of tumoricidal macrophages and production cytokines by synthetic muramyl dipeptides analogues Saiki, I.;Saito, S.;Fujita, C.;Ishida, H.;Iida, J.;Murata, J.;Hasegawa, A.;Azuma, I. https://doi.org/10.1016/0264-410X(88)90218-6
  24. Int. Immunopharmacol. v.1 Acemannan purified from Aloe vera induces phenotypic and functional maturation of immature dendritic cells Lee, J. K.;Lee, M. K.;Yun, Y. P.;Kim, J. S.;Kim, Y. S.;Kim, K.;Han, S. S.;Lee, C. K. https://doi.org/10.1016/S1567-5769(01)00052-2
  25. Immunology v.108 Tumor necrosis factor alpha but not lipopolysaccharide enhances preference of murine dendritic cells for Th2 differentiation Kikuchi, K.;Yanagawa, Y.;Aranami, T.;Iwabuchi, C.;Iwabuchi, K.;Onoe, K. https://doi.org/10.1046/j.1365-2567.2003.01537.x
  26. J. Immunol. v.154 Dendritic cells produce IL-12 and direct the development of Th1 cells from native CD4+ T cells Macatonia, S. E.;Hosken, N. A.;Litton, M.;Vieira, P.;Hsieh, C. S.;Culpepper, J. A.;Wysocka, M.;Trinchieric, G.;Murphy, K. M.;O;Garra, A.
  27. Cancer Immunol. Immunother. v.51 Adjuvants and the promotion of Th1-type cytokines in tumour immunotherapy Dredge, K.;Marriott, J. B.;Todryk, S. M.;Dalgleish, A. G. https://doi.org/10.1007/s00262-002-0309-z
  28. Int. Immunopharmcol. v.1 Cellular and humoral adjuvant activity of lectins isolated from Korean mistletoe (Viscum album colaratum) Yoon, T. J.;Yoo, Y. C.;Kang, T. B.;Her, E.;Kim, S. H.;Kim, K.;Azuma, I.;Kim, J. B. https://doi.org/10.1016/S1567-5769(01)00024-8
  29. Cancer Immunol. Immunother. v.49 Granulocyte-macrophage-colony-stimulating factor plus interleukin-2 plus interferon alpha in the treatment of metastatic renal cell carcinoma: a pilot study Westermann, J.;Reich, G.;Kopp, J.;Haus, U.;Dorken, B.;Pezzutto, A. https://doi.org/10.1007/s002620000159