Drug Interaction between Flavone and Paclitaxel in Rats

프라본과 파크리탁셀과의 약물상호작용

  • Published : 2003.04.01

Abstract

The purpose of this study was to investigate the effect of flavone (20 mg/kg) on the pharmacokinetic parameters and the bioavailability of paclitaxel (40 mg/kg) orally coadministered in rats. The plasma concentration of paclitaxel in combination with flavone was increased significantly (coadministration p<0.05, pretreatment p<0.0l) compared to that of control. Area under the plasma concentration-time curve (AVC) of paclitaxel with flavone was significantly (coadministration p<0.05, pretreatment p<0.0l) higher than that of control. Peak concentration (Cmax) of paclitaxel with flavone were significantly increased (coadministration p<0.05, pretreatment p<0.01) compared to that of control. Time to peak concentration (Tmax) of paclitaxel with flavone decreased significantly (p<0.05) than that of control. The total body clearance (CLt) and elimination rate constant ($\beta$) of paclitaxel with flavone were significantly reduced (p<0.05) compared to those of control. Half-life (t$_{1}$2/) of paclitaxel with flavone was significantly prolonged (p<0.05) compared to that of control. Based on these results, it might be concluded that flavone may enhance bioavailability of paclitaxel through the inhibition of cytochrome P450 and P-glycoprotein, which are engaged in paclitaxel absorption and metabolism in liver and gastrogintestinal mucosa, respectively.

Keywords

References

  1. J. Med. Chem. v.35 no.1 Synthesis and evaluation of some water-soluble prodrugs and derivatives of taxol with antitumor activity Mathew, A. E.;Mejillano, M. R.;Nath, J. P.;Himes, R. H.;Stella, V. J. https://doi.org/10.1021/jm00079a019
  2. Cell v.66 Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells Chaudhary, P. M.;Robinson, I. B. https://doi.org/10.1016/0092-8674(91)90141-K
  3. Annu. Rev. Biochem. v.58 The biochemistry of P-glycoprotein-mediated multidrug resistance Endicott, J. A.;Ling, V. https://doi.org/10.1146/annurev.bi.58.070189.001033
  4. Cancer Res. v.54 Selective biotransformation of taxol to 6α-hydroxytaxol by human cytochrome P450 2C8 Rahman, A.;Korzekwa, K. R.;Grogan, J.;Gonzalez, F. J.;Harris, J. W.
  5. J. Pharmacol. Exp. Ther. v.275 Variability in human cytochrome P450 paclitaxel metabolism Sonnichsen, D. S.;Liu, Q.;Schuetz, E. G.;Schuetz, J. D.;Pappo, A.;Relling, M. V.
  6. Biochem. Pharmacol. v.46 no.9 Short communication; Taxol metabolism in rat hepatocytes Walle, T. https://doi.org/10.1016/0006-2952(93)90336-U
  7. Clin. Pharmacokinet. v.27 no.4 Clinical Pharmaco-kinetics of Paclitaxel Sonnichsen, D. S.;Relling, M. V. https://doi.org/10.2165/00003088-199427040-00002
  8. Hematol. Oncol. Clin. North Am. v.9 no.2 Clinical studies with modulators of multidrug resistance Fisher, G. A.;Sikic, B. I.
  9. Cancer Res. v.50 Reversal of multidrug resistance by lipophilic drugs Hofsli, E.;Meyer, J. N.
  10. Enviromental Health Perspectives v.105 no.8 Structure-activity relationship for xenobiotic transport substrates and inhibitory ligands of p-glycoprotein Bain, L. J.;McLanchlan, J. B.;LeBanc, G. A. https://doi.org/10.2307/3433698
  11. Cancer Res. v.54 Taxol metabolism by human liver microsomes : identification of cytochrome P450 isozymes involved in its biotransformation Cresteil, T.;Monsarrat, B.;Alvinerid, P.;Treluyer, J. M.;Vieira, I.;Wright, M.
  12. Cancer Res. v.54 Metabolism of taxol by human hepatic microsomes and liver slices : participation of cytochrome P450 3A4 and an unknown P450 enzyme Harris, J. W.;Rahman, A.;Kim, B. R.;Guengerich, F. P.;Collins, J. M.
  13. Proc. Natl. Acad. Sci. v.95 a class of modulators with bifunctional interactions at vicinal ATP-and steroid binding sites on mouse P-glycorotein Conseil, G.;Baubichon-cortary, H.;Dayan, G.;Jault, J. M.;Barron, D.;dI Pietro, A. https://doi.org/10.1073/pnas.95.17.9831
  14. Cancer Lett. v.177 no.1 Inhibition of P-glycoprotein by flavonoid derivatives in adriamycin-resistant human myelogenous leukemia (K562/ADM) cells Ikegawa, T.;Ohtani, H.;Koyabu, N.;Juichi, M.;Iwase, Y.;Ito, C.;Furukawa, H.;Naito, M.;Tsuruo, T.;Sawada, Y. https://doi.org/10.1016/S0304-3835(01)00761-3
  15. Cancer Chemother Pharmacol. v.36 no.5 Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target Soambia, G.;Ranelletti, F. O.;Panici, P. B.;Vincenzo, De R.;Bonanno, G.;Frrandina, G.;Piantelli, M.;Bussa, S.;Rumi, C.;Ciantriglia, M.(et al.) https://doi.org/10.1007/BF00686195
  16. Toxicology v.144 Bioflavoniods : selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1 Doostdar, H.;Burke, M. D.;Mayer, R. T. https://doi.org/10.1016/S0300-483X(99)00215-2
  17. Drug Metabol Drug Interact v.17 no.1-4 Effect of the grapfruit flavonoid naringen on pharmaco-kinetics of quinine in rats Zhang, H.;Wong, C. W.;Coville, P. G.;Wanwimolruk, S.
  18. Eur. J. Nutr. v.38 no.3 Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines Kutz, B. S.;Wellzel, U.;Daniel, H. https://doi.org/10.1007/s003940050054
  19. Cancer Biother Badiopharm. v.12 no.2 influence of flavonoids on cell cycle pahse as analyzed by flowcytometry Koide, T.;Kamei, H.;Hashimoto, Y.;Kojima, T.;Terabe, K.;Umeda, T. https://doi.org/10.1089/cbr.1997.12.111
  20. Prog Clin Biol Res. v.213 Plant flavoniods in biology and medicine Cody, V.(ed.)
  21. Prog Clin Biol Res. v.280 Plant flavoniods in biology and medicine Cody, V.(ed.)
  22. J Urol. v.152 Growth-inhibitory effect of quercetin and presence of type Ⅱ estrogen binding sites in primary human transitional cell carcinomas Larocca, L. M.;Giustacchini, M.;Maggiano, N.(et al.) https://doi.org/10.1016/S0022-5347(17)32649-6
  23. Br J Cancer v.62 Inhibitory effect of quercetin on OVCA 433 cells and presence of type Ⅱ estrogen binding sites in primary ovarian tumours and cultured cells Scambia, G.;Ranelletti, F. O.;Benedetti Panici, P.(et al.) https://doi.org/10.1038/bjc.1990.414
  24. Am J Surg. v.158 The effects of the bioflavoniod quercetin on squamuscell carcinoma of head and neck origin Castilllo, M. H.;Perkins, E.;Campbell, J. H.(et al.) https://doi.org/10.1016/0002-9610(89)90132-3
  25. Cancer Chemother Pharmacol. v.36 no.5 Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line : P-glycoprotein as a possible target Soambia, G.;Ranelletti, F. O.;Panici, P. B.;Vincenzo, De R.;Bonanno, G.;Frrandina, G.;Piantelli, M.;Bussa, S.;Rumi, C.;Ciantriglia, M.(et al.) https://doi.org/10.1007/BF00686195
  26. Life Sciences v.57 no.19 Effect of flavonols on P-glycoprotein activety in cultured rat hepatocytes Choi, C. H.;Romiti, N.;Cervelli, F.;Tongiani, R. https://doi.org/10.1016/0024-3205(95)02152-9
  27. J. Pharmacol. Exp. Ther. v.268 no.3 Cytochrome P450 3A-mediated human liver microsomal taxol 6α-hydroxylation Kumar, G. N.;Walle, U. K.;Walle, T.
  28. Cancer Res. v.54 no.21 Selective biotransformation of taxol to 6α-hydroxytaxol by human cytochrome P450 2C8 Rahman, A.;Korzekwa, K. R.;Grogan, J.;Gonzalez, F. J.;Harris, J. W.
  29. J. Chromato B. v.709 Assay of paclitaxel (Taxol) in plasma and urine by High Performance Liquid Chromatography Manrin, N.;Catalin, J.;Blachon, M. F.;Durand, A. https://doi.org/10.1016/S0378-4347(98)00060-7
  30. Yakugaku. Zasshi. v.114 no.5 Determination of new anticancer drug, paclitaxel, in biological fluids by high performance liquid chromatography Mase, H.;Hiraoka, M.;Suzuki, F. https://doi.org/10.1248/yakushi1947.114.5_351
  31. J. Pham. Dyn. v.4 A pharmacokinetics analysis program for microcomputer Yamaoka, K.;Tanigawara, Y.;Nakagawa, T.;Uno, T.