Ideal Leaf Type on Leaf Shape and $\textrm{CO}_2$ Use Efficiency of Different Seed Size Cultivar in Soybean

엽형 및 $\textrm{CO}_2$ 이용효율에 따른 콩 입중별 이상초형 연구

  • 이강세 (군산대학교 자연과학대학) ;
  • 전병무 (연변대학 장백산 천연자원보호.개발연구원) ;
  • 김영진 (호남농업시험장) ;
  • 국용인 (전남대학교 생물공학연구소) ;
  • 박호기 (호남농업시험장) ;
  • 박문수 (호남농업시험장)
  • Published : 2003.06.01

Abstract

To examine ideal leaf types with higher $\textrm{CO}_2$ assimilates and different seed sizes, 12 soybean varieties were planted on the pot in a plastic house covered with glass. Leaf function based on stomatal conductance and $\textrm{CO}_2$ assimilation in soybean is different in seed size and leaflet shape. Mean $\textrm{CO}_2$ assimilation of a single leaf was 19.66 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$ and showed higher in small seed cultivars with narrow leaflet than that of small seeds with wide leaflet (18.29 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$), but within large seed groups, it was higher in wide leaflets (19.17 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$) than narrow leaflet cultivars (17.45 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$). In small seed and narrow leaflet cultivars, stomatal conductance ranged from 0.14 to 0.15 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$, while $\textrm{CO}_2$ assimilation ranged from 19 to 20 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$. The Photosynthetic rate was closely related to stomatal conductance, transpiration and water use efficiency.

콩의 입중에 따른 이상초형(ideal type)의 개발을 위해 광합성호율이 높은 안전 다수성 콩 품종육성의 엽형 모델을 찾고자 엽형 및 입중에 따른 잎기능에 관련된 몇 가지 주요특성 및 $\textrm{CO}_2$ 이용효율과의 관계를 조사했는데, 그 결과를 요약하면 다음과 같다. 1. 대두 단엽의 $\textrm{CO}_2$ 동화량은 소립품종에서 장엽형 잎을 가진 품종이 19.66 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$로서 환엽형 잎을 가진 품종(18.29 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$)보다 높은 경향이었으며, 대립품종에서는 환엽형 잎을 가진 품종이 19.17 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$로서 장엽형품종(17.45 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$)보다 높았다. 2. 기공전도도가 0.12-0.13범위에서는 주로 대립, 장엽형 품종이 분포하고 있었으며 $\textrm{CO}_2$ 동화량은 17-18 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$정도로 낮았고, 0.14-0.15범위에서는 소립, 장엽형 품종들이 분포하였는데 $\textrm{CO}_2$ 동화량은 19-20 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$로서 높았다. 3. $\textrm{CO}_2$ 동화량에 영향을 미치는 전자생성량은 대립, 환엽형 잎을 가진 품종들이 0.82-0.83으로 가장 적었으나 $\textrm{CO}_2$ 동화량은 18-20 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$로서 높았다. 4. 주당 $\textrm{CO}_2$ 흡수량은 나물콩에서는 장엽형 품종이 68.5ppm으로 환엽형(46.5 ppm)보다 크게 높았으며 장류콩에서는 환엽형이 70.1 ppm으로서 장엽형(63.1 ppm) 보다 약간 높았다.

Keywords

References

  1. Ball, J. T., I. E. Woodrow and J. A. Berry. 1987. Progress in photosynthesis research Vol. IV pp. 221-224
  2. Dornhoff, G. M. and R. M. Shibles. 1970. Varietal differences in net photosynthesis of soybean leaves. Crop Sci. 10 : 42-451 https://doi.org/10.2135/cropsci1970.0011183X001000010016x
  3. Ford, D. M. and R. Shibles. 1988. Photosynthesis and other traits in relation to chloroplast number during soybean leaf senescence. Plant Physiol. 86: 108-111 https://doi.org/10.1104/pp.86.1.108
  4. Haile, F. J., L. G. Higley, J. E. Specht and S. M. Spomer. 1998. Soybean leaf morphology and defoliation tolerance. Agronomy J. 90(3): 353-362 https://doi.org/10.2134/agronj1998.00021962009000030007x
  5. Hiebsch, C. K., E. T. Kanemasu and C. D. Nickell. 1976. Effects of soybean leaflet type on net carbon dioxide exchange, water use, and water use efficiency. Can. J. Plant Sci. 56 : 455-458 https://doi.org/10.4141/cjps76-075
  6. Lugg, D. G. and T. R. Sinclair, 1980. Seasonal changes in morphology and anatomy of field-grown soybean leaves. Crop Sci. 20 : 191-196 https://doi.org/10.2135/cropsci1980.0011183X002000020011x
  7. Mian, M. A. R., R. Wells, T. E. Carter Jr., D, A. Ashley, and H. R. Boerma. 1998. RFLP tagging of QTLs conditioning specific leaf weight and leaf size in soybean. Theo. and Appl. Gen. 96 : 354-360 https://doi.org/10.1007/s001220050748
  8. Moffatt, J. M., R. G. Sears and G. M. Paulsen. 1990. Wheat high temperature tolerance during reproductive growth. I. Evaluation by chlorophyll fluorescence. Crop Sci. 30 : 881-885 https://doi.org/10.2135/cropsci1990.0011183X003000040024x
  9. Sasahara, T. 1984. Varietal variations in leaf anatomy as related to photosynthesis in soybean. Jap. J. Breed. 34 : 295-303 https://doi.org/10.1270/jsbbs1951.34.295
  10. Shibles, R. J. Secor and D. M. Ford. 1987. Carbon assimilation and metabolism. In JR Wilcox, ed, Soybeans: Improvement production and uses. American Soc. of Agronomy, Madison,WI, pp. 535-588
  11. Sung, F. J. M. and J. J. Chen. 1989. Changes in photosynthesis and other chloroplast traits in lanceolate leaflet isoline of soybean. Plant Physiol. 90 : 773-777 https://doi.org/10.1104/pp.90.2.773
  12. Sung, D. K., D. C. Shin, Y. Son and Y. C. Kim. 1990. Photosynthesis and some characteristics in different stages of soybean cultivars (G. max.). The Research Reports of the RDA Upland and Indus. Crops, Korea 32(1): 32-37
  13. Wells, R., L. L. Schulze, D. A. Ashley, H. R. Boerma and R. H. Brown. 1982. Cultivar differences in canopy apparent photosynthesis and their relationship to seed yield in soybeans. Crop Sci. 22 : 886-890 https://doi.org/10.2135/cropsci1982.0011183X002200040044x
  14. Yun, J. I. and S. Elwynn Taylor. 1988. Leaf photosynthesis as influenced by mesophyll cell volume and surface area in chambergrown soybean (Glycine max) leaves. Kor. J. of Crop Sci. 33(4) : 353-359
  15. Yun, J. I., M. J. Lauer and S. E. Taylor. 1991. Role of mesophyll morphology in determination of leaf photosynthesis in field grown soybean. Kor. J. Crop Sci. 36(6) : 560-567