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1. Introduction

Minimizing energy consumption of electronic
devices has become a first class system design
concern[1], especially, in the areas of embedded
and portable devices, since such devices draw
their current from batteries that place a limited
amount of energy at the system’s disposal. On
the other hand, in recent years, increased ap-
plication demand for functionality[1,2], market
pressures, and shortening of design cycles, have
led to a new system-on-a-chip (SOC) platform
based design methodology[3].

A platform is a computing system composed
of artifacts such as general-purpose processors,
hierarchy of caches, on-chip main memory, I/O
peripherals, co-processors, and possibly FPGA
fabric for post-fabrication customizations. These
platforms are generally targeted toward a large
number of applications from a specific domain
(e.g., networking or multimedia). To address the
need for energy efficiency, the artifacts within

these SOC platforms are often designed to be
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dynamically configurable. Features such as
processor and memory power modes{4]; dy-
namic voltage scaling[5]; and run-time cache
reconfiguration (e.g., Motorola's M*CORE[6, 7])
have been commercially introduced. Dynamic
reconfiguration of the platform provides an op-
portunity for operating system (OS) and/or ap-
plication tasks to carry out strategic highlevel
resource management and achieve energy
savings.

In this work, we propose an online algorithm
for dynamically adapting the cache subsystem
to the workload requirements for the purposes
of saving energy. The workload is considered
to be a set of tasks with real-time deadlines.
Our online algorithm is invoked as part of the
OS scheduler, which performs standard earliest
deadline first (EDF) task scheduling first. Then,
our online algorithm, determines an ideal cache
configuration for the current task that is to be
executed.

In our experiments, we consider the overhead
of the OS scheduler, our online algorithm, as
well as the cache reconfiguration time and
energy penalties. Furthermore, we evaluate the

quality of our technique by measuring the global
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power savings (i.e., considering processor, mem-—
ories, and buses in addition to caches).

When invoked, our algorithm initially per-
forms an incremental search of the cache con-
figuration space and updates a set of pseudo-
Pareto-optimal points for the current task to be
executed. Subsequently, the pseudo-Pareto-
optimal set is used to select a configuration
meeting the task deadline while minimizing
power consumption.

The remainder of this paper is organized as
follows. In Section 2, we outline related work.
In Section 3, we formulate the problem and state
our assumptions. In Section 4, we introduce our
online algorithm. In Section 5, we present our
experiments. In Section 6, we give our con-—

cluding remarks.

2. Related Work

One similar approach that has gained pop-
ularity is dynamic voltage scaling (DVS), where
one can save energy with minor performance
degradation by reducing the operating supply
voltage of the processor, or even of the whole
system[8-10]. The premise of all DVS tech-
niques is to achieve a steady/even processor
speed while meeting all tasks deadlines. This
is often accomplished by appropriately sched-
uling tasks and selecting voltage settings that
eliminate the slack. Our approach is completely
complementary to DVS. In our approach, we do
not perform task scheduling. Instead, we as-
sume an already scheduled task set. The

premise of our work is to tune the cache down

to the working set of each task that is to be
executed, thus saving on cache power con-
sumption. Our aim is not to disturb the task
timings. Thus, the advantage is the possibility
of combining a DVS scheduler with our ap-
proach for added benefit.

A great amount of previous work has shown
that statically tuning the cache subsystem to
the running task can result in significant energy
savings[11,12]. For example, Motorola’s recent
version of an M*CORE processor IC has a
configurable 4 way set associative unified
cache, in which each way can be disabled, or
used for instructions, data, or both. Malik et al.
[7] have shown that the best cache con-
figuration depends heavily on the particular
running task. Likewise, Zhang et al.[13] analysis
shows that having a dynamically configurable
line size architecture can have a significant (up
to 50%) energy saving potential in embedded
systems.

Tang et al.[14] have proposed an architectural
scheme for dynamic cache line sizing. Their
approach is to introduce a hardware unit along
with a memory and cache protocol for fine
grained tuning of the line size. In contrast, our
approach is a software technique that allows the
OS to take charge of cache reconfiguration,
taking into account a dynamic workload and
application requirements.

In a similar effort, Dropsho et al.[15] have
considered disabling cache ways (ie., asso-
ciativity) dynamically to achieve low power.
They propose cache architectures intended for

dynamic reconfiguration. Further, they provide
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a hardware solution for adaptivity. As with the
previous technique, our approach is a software
technique performing adaptivity at the task and
0OS levels.

3. Problem Description

Our problem formulation is as follows. The
system is composed of N tasks, 71, 72 Tn. Each
task T: has a deadline D; and a period Pi. To
generalize the solution, a non periodic or spo-
radic task 7 is assumed to have P; = 0. Tasks
are nonpreemptive. One of the tasks that are
running on the platform is the scheduler Ts.
Scheduler task T has no deadline and no period,
and is activated every time a task finishes
execution to perform the context switching. As
stated previously, the scheduler selects the next
task T; to be executed based on EDF. Then, our
online algorithm, running as part of the sched-
uler, selects an appropriate cache configuration
that maintains the timing of the task 7; while
saving as much energy as possible.

The platform’s cache subsystem is assumed
to have a finite number of possible con-
figurations G, C; C.,. Each configuration C; will
be different than any other configuration C; by
at least one of the configurable parameters:
cache size, line size or cache associativity.
Among all valid configurations, one of them is
the so-called reference configuration C.. The
reference configuration is assumed to be the
default system configuration, or the config-
uration to be used if dynamic cache recon-

figuration is not used. For schedulability testing,

we assume that the worse case execution time
of each task under the reference configuration
is known ahead of time (e.g., obtained via offline
simulation).

We assume a time penalty for cache
reconfiguration. This penalty is for writing dirty
data back to memory. The time penalty is
captured by a function Pr(C;,C) of the current
configuration C; and the new configuration G,
This function can be either hard coded stat-
ically, or learned by our online algorithm during
run time. There is also a power penalty as-
sociated to the cache reconfiguration that is also
taken into account in the results. The power
penalty is also due to writing dirty data back
to memory and is a function of the current and
the new configuration. Both time and power
penalty for reconfiguration are different ac-
cording to the cache configuration and the task
that has completed. Because of the dynamic be-
havior of each different application, the amount
of dirty data is not constant, and so the re-
configuration cost is dependable on both the
task and the current cache configuration.

Fig. 1 depicts the runtime behavior proposed
herel) Here, task 7; runs with cache config-
uration ;, while 7; with C;. Between these two
tasks, the scheduler 7 executes with the same

cache configuration of the last running task. Our

[
—p

Time

Fig. 1. Runtime behavior

1) The time line is not to scale.

_32_



Adaptive Cache Management for Low Power Embedded Systems

BZYUEIO GOSN M7 H48 20034 12§

algorithm runs as part of the scheduler task T.
Note that the time penalty Pr(C;C,) of cache
reconfiguration is also depicted in the figure.

We note that being able to select the next
cache configuration without any prior knowl-
edge of the currently running task is especially
important, as we assume that the work load is
dynamic and not necessarily known during
design time. The main advantage of our algo-
rithm is that it learns about task behavior under
different cache configurations in a dynamic
setting.

We assume that there is a way to measure
the power consumption of each task just ex-
ecuted on the platform. We assume that this
power consumption is inclusive of the power
penalty for cache reconfiguration. Checking the
power consumption can be accomplished by
reading cache access counters and applying
appropriate power models. Alternatively, a plat-
form may provide direct measurements of the
power consumption of its components.

We allow for some missed deadlines as the
online algorithm is learning about the task be-
havior under different cache configuration. This
is a reasonable assumnption for soft real-time
application where occasional lose of a deadline
is not as critical as in a hard realtime ap-
plication. Despite this timing relaxation, soft
real time applications (e.g., multimedia, vide-
oconferencing, etc.) are very common in the
embedded system environment. In a strict
deadlines scenario, there is little that can be
done, since our algorithm is likely to miss some

deadlines when learning about the task be-

havior. One alternative is to suppress the learn-
ing phase, providing the scheduler with offline
data for each task. We leave this out of this
work, since it is a simple case of the proposed

approach.

4. Proposed Solution

4.1 Overview

Dynamic cache reconfiguration poses a
trade-off between power and performance.
Larger caches are supposed to reduce the
number of misses, allowing a task to execute
faster. On the other hand, the energy needed for
a read or write in a bigger cache is larger than
in a smaller cache, leading to a higher energy
consumption scenario.

This is clearly a multi-objective function: we
want to minimize power while still meeting a
time constraint. In a multi-objective function, it
is usually the case that one specific solution is
good for one objective, but not so good for the
other ones. In the universe of different config-
urations, we can identify some configurations
that are better than all the other ones for at least
one of the performance criteria. These are the
so—called Pareto-optimal solutions.

However computing the exact set of Par-
etooptimal configurations is a challenging prob-
lem, as the configuration space is likely to be
large. Instead, we aim at computing an esti-
mated Pareto-optimal set (i.e, a near-optimal
set) which we refer to as the pseudo-Pareto-
optimal cache configurations. We dynamically

discover the pseudoParetooptimal cache con-
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figurations, for each task, which are used to
determine the best cache configuration for low
pDOWET.

Our online algorithm operates in two phases.
The first phase of our online algorithm is
designed to discover the performance of each
task under different cache configurations. This
is the Pareto-discovery phase. The second
phase of our online algorithm is the cache
configuration selector.

Fig. 2 depicts the parts of the task scheduler,
which includes the two phases of our online
algorithm. Note that the execution of the two
phases of our online algorithm is interleaved and
every time the scheduler is activated one
iteration is completed for each of phase. We also
point out that during phase I, the discovery
phase, it is possible that some deadlines are
missed. However, after this phase is over, the
application behavior is known to the scheduler
and no further deadlines are expected to be
missed. A common task configuration database
is shared between discovery and selection. The
database is build incrementally by the Pareto
discovery algorithm, and is used to keep

EDF
1 Next
Rhase I. Paret hase II: Cac
Sch discovery selector Next$
cheduler ask database !config.

Fig. 2. The conline algorithm

information about the pseudo-Pareto-optimal
configurations known so far. After a finite

number of iterations, the discovery process is

considered finished and the database is stable.
The configuration selection algorithm consults
the database in order to pick the best cache
configuration to be set for the current activation
of the task.

The complete scheduler along with our online

algorithm skeleton is given in Fig. 3.

SCHEDULER:
Input: current task and config. (T, C)
Output: next task and config. (Tj, C)

// compute delta time and power
dtime = time() Ti.start_time
dpower = (energy() Ti.start_energy)/dtime

// introduce new Pareto points
is_pareto = true
for each px in Ti.P
if( petime < dtime && px.power < dpower )
is_pareto = false
if( is_pareto ) {
TP=TiP {G}
for each pk in Ti.P
if( petime > dtime && pe.power > dpower )
T.P=TiP {p}
}

// perform standard scheduling
Tj = EDF()

// explore or select
if( need_to_explore(T3) )

G; = discover_pareto(T;) // Section 4.2
else

C; = pick_best_config(T;) // Section 4.3

// prepare for next execute
T.start_time = time()
T;.start_energy = energy()
return(T;, G)

Fig. 3. Scheduler skeleton

4.2 The Pareto Discovery Phase

The main objective of the Pareto discovery
phase is to converge on to a reasonable appr-

oximation of the actual Pareto-optimal set for

-4 -



Adaptive Cache Management for Low Power Embedded Systems

BIIYEOTIOOIN H7H H4% 20038 12§

each task.

The discovery procedure starts with the
reference configuration as the only member of
the pseudoParetooptimal set. Gradually, each of
the cache size, line size, and associativity
parameter are varied, individually (i.e., one
change per scheduler invocation) in a greedy
search process. Specifically, in a first stage,
starting from the reference configuration, the
cache size parameter is changed until all
possible settings have been explored, or the task
timings are affected beyond certain threshold.
Then, in a similar fashion, during second and
third stages, the cache line and associativity
parameters are varied for the configurations
that are in the pseudo-Pareto-optimal set.

A new point p; is introduced into the
pseudo-Pareto-optimal set P if it has a better
time or power measure than every other point
piEP. The newly added point p; will invalidate
any existing point p;€P if p; has an inferior
time and power measures than p;. Invalidated

points are removed from the set P.

4.3 Configuration Selection Phase

The configuration selection phase is based on
the utilization rate of the processor. With
smaller utilization rates, there is additional slack
to change the current cache configuration to a
lower energy at a higher execution time con-
figuration.

The utilization rate of the processor is
calculated every time a task finishes execution,
or whenever a task is added or removed to and

from the system. At any moment, given that the

tasks are sorted according to EDF, the uti-

lization rate can be calculated as follows.

i
Z exec_time;
. j=1
util = max| 4

vi | deadline, — current _time

For the utilization calculation, the best case
execution time (but not necessarily most energy
efficient) of each task is used. Given this util-
ization rate, we calculate the target execution

time for the next task 7; as shown below.
fime . = exec_time /
target _exec_time; = il

Given the target execution time, our online
algorithm selects the pseudo-Pareto config-
uration that has a time less (but closest) to the
target time.

Note that utilization rate of 1.0 means that
there is no slack available, thus the fastest
configuration must be used to meet the deadline.
On the other extreme, a low utilization rate of
0.1 means that only 1/10 of the processing
available is committed to task execution, and
thus the system can shift to a much lower cache
configuration, increasing the execution time and

saving power.

5. Experiments

The target SOC platform used in our ex-
periments is shown in Fig. 4. The Platune
simulator was modified for our experiments
[16]. Our platform included a MIPS processor
with unified cache, main memory, and the

associated buses. A timer peripheral was used
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by the scheduler for interval timing. Likewise,
a hardware power monitor, based on models
developed in Platune, was incorporated into the
platform for task power measurements.

The simulated results for time and power
consumption include all the penalties associated
to cache reconfiguration, including the cache
flush before each reconfiguration, and the cold
misses that result from the fact that the cache
is cleared before every task is scheduled. An
operating system scheduler was also imple-
mented, so that the scheduling overhead could
be taken into account. Our online algorithm was
incorporated into this scheduler.

For our platform, the reference configuration
C: was set to be an 8K byte, with a line size
of 4 bytes, and a 2-way set associativity. The
possible cache sizes ranged from 256 bytes to
8K bytes, in power of 2 increments. The pos-
sible line size ranged from 4 to 16 bytes in
powers of 2 increments. Finally, the possible
degree of associativity ranged from 1 to 4.

For our experiments, we used typical
embedded system tasks that are part of the

Main

BP [P Unified $ [€7P| Memory
Timer |€ Power

Monitor

Fig. 4. Target SOC Platform

PowerStone benchmark applications [16]. These
tasks included a Unix compression utility called
compress, a CRC checksum algorithm called

crc, an encryption algorithm called des, an

engine controller called engine, an FIR filter
called fir, a fax decoder called g3fax, a sorting
algorithm called ucbgsort, an image rendering
algorithm called blit, a POCSAG communication
protocol called pocsag, and a JPEG decoder
called jpeg.

We did three sets of experiments, each set
corresponding to one of high processor uti-
lization, medium processor utilization, and low
processor utilization. In other words, we se-
lected a mix of tasks, from the Powerstone set
of tasks, along with appropriate deadlines to
result in a processor utilization of 9096, 50%, and
20%. The task mix included tasks with different
data work set size, therefore different cache
requirements. One task with a large work set
was selected, jpeg, together with medium and
smaller tasks, g3fax, ucbgsort and blit.

Fig. 5 depicts our results for the three dif-
ferent processor utilization experiments. In the
figure, the steady/dashed line gives the power
consumption of the overall system if configured
to execute with the reference cache config-
uration. The varying plot depicts power con-
sumption of the system, as a function of time,
as it adapts using our approach.

Note that during early stages, the power
profile oscillates. This is due to the algorithm
discovering the pseudo-Pareto-optimal points.
During this time, we note that some deadlines
are missed. For example, in the low processor
utilization, the final power consumption (e.g., at
25 second marker) is higher than that cor-
responding to the earlier seen configurations

(e.g., 5 second marker). However, that con-
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Fig. 5. Experimental Results

figuration is not used because of a deadline
miss. Also, note that when the processor
utilization is very high, most of the tasks need
to run under the fastest configuration, which for
us is the reference configuration, in order to
meet the deadlines. In this case, there is as little
as 1% opportunity for saving power. However,
as the utilization goes down to medium and low,

significant energy saving, namely 19% and 22%

respectively, can be observed. We note that this
is overall SOC platform power saving and not
just the cache subsystem.

We also point out that the presented al-
gorithm is generic enough to be used in SOC
and non-SOC platforms. The results presented
here are regarding the SOC platform previously
discussed. In order to evaluate non-SOC plat-
forms, one needs to adapt the power models of
the simulator, especially those related to the
cache-memory bus and the main memory. The

overall savings might be different as well.

6. Conclusion

We have proposed an online algorithm for
dynamically reconfiguring the cache subsystem
of a system-on-a-chip (SOC) platform to meet
timing requirements while minimizing power
consumption. Our online algorithm gradually
constructs a set of pseudo-Pareto~optimal cache
configurations for each task, which it then uses
to determine a low power operating point meet-
ing timing requirements. We have evaluated the
quality of our algorithm by considering the
overall energy saving of an SOC platform, in-
cluding the time and energy overhead of the
scheduler and our online algorithm, as well as
the cache reconfiguration penalties. Our results
show savings of approximately 20% in overall

system energy usage.
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