Purification and Identification of an Antifungal Agent from Streptomyces sp. KH-614 Antagonistic to Rice Blast Fungus, Pyricularia oryzae

  • Rhee, Ki-Hyeong (Department of Biological Science, Kongju National University)
  • Published : 2003.12.01

Abstract

The actinomycete strain KH-6l4 possessed strong antifungal activity, especially antagonistic to the rice blast fungus, Pyricularia oryzae. Diaminopimelic acid (DAP) type and morphological and physiological characteristics, examined by scanning electron microscopy (SEM), indicated that KH-614 belonged to the genus Streptomyces. Antifungal agent produced by this strain was found to be most active, when the strain was cultured in the presence of glucose, polypeptone, and yeast extract (PY) medium for 6 days at $27^{\circ}C$. Based on the spectral report data, MS and NMR, the antifungal agent was identified as cyclo(L-leucyl-L-prolyl). According to the antimicrobial activity test measured by minimal inhibitory concentration (MIC), the cyclo(1eu-pro) exhibited the activity against Candida albicans IAM 4905, Mucor ramannianus IAM6218, Rhizoctonia solani IFO 6218, Aspergilus fumigatus ATCC 42202, Glomerella cingulata IFO 9767, Trichophton mentagrophytes ATCC 18749, and Trichophyton rubrum ATCC 44766, the order of MIC values were 50, 12.5, 5, 50, 25, 5, $5\;\mu\textrm{g}/ml$, respectively. Specifically, cyclo(1eu-pro) was one of the most effective elements against Pyricularia oryzae IFO 5994 with the MIC value of $2.5\;\mu\textrm{g}/ml$, thus indicating that cyclo(leu-pro) is a potential antifungal agent.

Keywords

References

  1. Pyricularia oryzae v.10 Purification and characterization of a novel antifungal protein from Paenibacillus macerans PM1 antagonistic to rice blast fungus Bae,D.W.;Y.S.Kwak;J.T.Lee;D.Y.Son;S.S.Chun;H.K.Kim
  2. J. Am. Chem. Soc. v.95 Structure of the peptide antibiotic amphomycin Bodansky,M.;G.F.Singler;A.Bodansky https://doi.org/10.1021/ja00788a040
  3. Bull. Agric. Chem. Soc. Jpn. v.24 Studies on the metabolic products of Rosellinia necatrix. Ioslation and characterization of sveral physiologically active neutral substances Chen,Y.S. https://doi.org/10.1271/bbb1924.24.372
  4. Appl. Microbiol. v.21 Clasification of Streptomyces spore surfaces into five groups Dietz,A.;J.Mathews
  5. J. Chem. Soc. v.121 Cyclopeptides from Rocalla funciformis Forster,M.O.;W.B.Saviole
  6. Annu. Rev. Phytopathol. v.26 Role of antibiosis in the biocontrol of plant disease Fravel,D.R.
  7. J. Microbiol. Biotechnol. v.12 Detection of oleic acid biodegradation by fungi Han,D.W.;H.Suh;D.H.Lee;B.J.Park;K.Takatori;J.C.Park
  8. Chemotherapy v.3 Amphomycin, new antibiotic Heinemann,B.;M.A.Kaplan;R.D.Muir;I.R.Hooper
  9. Kor. J. Appl. Microbiol. v.24 Isolation and identification of Streptoverticillium sp. NA-4803 producing antifungal substance Lim,D.S.;S.K.Yoon;M.S.Lee;W.H.Yoon;C.H.Kim
  10. Phytopathology v.76 Production and partial characterization of antifungal stbstances antagonistic to Monilinia fructicola from Bacillus subtilis Mckeen,C.D.;C.C.Reilly;P.L.Pusey https://doi.org/10.1094/Phyto-76-136
  11. Pharmazie v.54 Antimicrobial activity of selected cyclic dipeptides Milne,P.;M.Graz;A.Hunt;H.Jamie;G.Grant
  12. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard M7-3 National committee for Clinical Laboratory Standards
  13. Tetrahedron v.31 Conformational states and biological activity of cyclic peptides Ovchinnikov,Y.A.;V.T.Ivanov https://doi.org/10.1016/0040-4020(75)80216-X
  14. J. Org. Chem. v.41 Preparation of episulfide DKPS from Zn$^{2+}$ catalysed cyclization procedure Ottenheijm,H.C.J.;J.D.M.Herscheid;G.P.C.Kerkhoff;T.F.Spende https://doi.org/10.1021/jo00883a024
  15. J. Microbiol. Biotechnol. v.12 Construction of characterization of a recombinant biolumiscence Streptomyces for potential environmental monitoring Park,H.J.;K.O.Hwang;E.S.Kim
  16. J. Microbiol. Biotechnol. v.12 Variation of antifungal activities of kitosans on plant pathogens Park,R.D.;K.J.Jo;Y.Y.Jo;Y.L.Jin;K.Y.Kim;J.H.Shim;Y.W.Kim
  17. Peptides v.16 Bioactive cyclic dipedtides PRASAD,C. https://doi.org/10.1016/0196-9781(94)00017-Z
  18. Apppl. Microbiol. v.6 A guide for classification of streptomycetes according to selected groups placement of strains in morphological sections Pridham,T.G.;C.W.Hesseltine;R.G.Benedict
  19. J. Microbiol. Biotechnol. v.11 Identification of Streptomyces sp. AMLK-335 producing antibiotic substance inhibitory of VRE (vancomycin-resistant enterococci) Rhee,K.H.;K.H.Choi;C.J.Kim;C.H.Kim
  20. J. Microbiol. Biotechnol. v.12 Inhibition fo DNA topoisomerase I by cyclo(L-prolyl-L-phenylalanyl) isolated Streptomyces sp. AMLK-335 Rhee,K.H.
  21. J. Gen. Appl. Microbiol. v.48 Isolation of characterization of Streptomyces sp. KH-614 producing anti-VRE (vancomycin-resistant enterococci) antibioties Rhee,K.H. https://doi.org/10.2323/jgam.48.321
  22. Int. J. Syst. Bacteriol. v.16 Methods for characterization of Streptomyces sp Shirling,E.B.;D.Gottlieb
  23. Bergey's Manual of Systematic Bacteriology v.4 Williams,S.T.;M.E.Sharpe;J.G.Holt;R.Murray;G.E.Brener;D.J.Krieg;N.R.Mouldar;J.W.Pfenning;N.P.Sneath,H.A.;J.T.Staley
  24. J. Gen. Microbiol. v.48 Use of a scanning electron microscope for the examination of actinomycetes Willams,S.T.;F.L.Davies https://doi.org/10.1099/00221287-48-2-171
  25. J. Gen. Appl. Microb. v.16 Taxonomic studies on coryneform bacteria. Ⅱ. Principle amino acid in the cell wall and their taxonomic significance Yamada,K.;K.Kamagata https://doi.org/10.2323/jgam.16.1_103
  26. J. Am. Chem. Soc. v.98 Cyclic dipeptides. 15. Lanthanide-assisted $^{13}$C and ¹H NMR analysis of preferred side-chain rotamers in proline-contaning cyclic dipeptide Young,P.E.;V.Madison;E.R.Blout https://doi.org/10.1021/ja00433a051