PQQ-Dependent Organic Acid Production and Effect on Common Bean Growth by Rhizobium tropici CIAT 899

  • Cho, Young-Shin (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, APSRC, College of Agriculture and Life Science, Chonnam National University) ;
  • Park, Ro-Dong (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, APSRC, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Yong-Woong (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, APSRC, College of Agriculture and Life Science, Chonnam National University) ;
  • Hwangbo, Hoon (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, APSRC, College of Agriculture and Life Science, Chonnam National University) ;
  • Jung, Woo-Jin (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, APSRC, College of Agriculture and Life Science, Chonnam National University) ;
  • Suh, Jang-Sun (National Institute of Agricultural Science and Technology) ;
  • Koo, Bon-Sung (National Institute of Agricultural Biotechnology) ;
  • Krishnan, Hari-B. (Plant Genetics Research Unit, USDA-ARS, University of Missouri Columbia) ;
  • Kim, Kil-Yong (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, APSRC, College of Agriculture and Life Science, Chonnam National University)
  • Published : 2003.12.01

Abstract

Rhizobium tropici CIAT 899 is capable of synthesizing inactive apo-glucose dehydrogenase (GDH). To become an active holo enzyme, the GDH requires a cofactor, PQQ. When R. tropici CIAT 899 was grown in a broth culture medium containing hydroxyapatite and pyrrolo quinoline quinone (PQQ), pH decreased while the concentration of soluble P increased. The solubilization of hydroxyapatite was associated with the production of gluconic acid and 2-ketogluconic acids. The organic acid production and P solubilization were greatly enhanced when the bacterium was grown with air supply. Effect of R. tropici CIAT 899 with (CI+PQQ) and without PQQ (CI) on the common bean growth was examined. Shoot and root weight, and N and P contents in CI+PQQ treatment, were significantly higher than those in control and CI treatment. Nodule weight and acetylene reducing activities were also significantly higher in CI+PQQ treatment than in other treatments.

Keywords

References

  1. FEMS Microbiol. Lett. v.140 PQQ-linked extracellular glucose oxidation and chemotaxis towards this cofactor in rhizobia Boiardi,J.L.;M.L.Galar;O.M.Neijssel
  2. Int. J. Syst. Bacteriol. v.39 Taxonomic diversity of the D-glucose oxidation pathway in the Enterobacteriaceae Bouvet,O.M.M.;P.Lenormand;P.A.D.Grimount https://doi.org/10.1099/00207713-39-1-61
  3. Current Microbiol. v.42 Periplasmic PQQ-dependent glucose oxidation in free-living and symbiotic rhizobia Bernardelli,C.E.;M.F.Luan;M.L.Galar;J.L.Boiardi https://doi.org/10.1007/s002840010222
  4. phaseoli. Plant Soil v.184 Growth promotin of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar Chabot,R.;A.Hani;P.M.Cescas https://doi.org/10.1007/BF00010460
  5. Eur. Biochem. v.200 Quinoproteins: Enzyme containing the quinonoid cofactor pyrrologquinoline quinone, topaquinone or tryptophan-tryptophan quinone Duine,A. https://doi.org/10.1111/j.1432-1033.1991.tb16183.x
  6. Soil Biol. Biochem. v.5 Application of the acetylene-ethylene assay for measurement of nitrogen fixation Hardy,R.W.R.;R.C.Burns;R.D.Holsten https://doi.org/10.1016/0038-0717(73)90093-X
  7. Biotechn. Adv. v.17 Phosphate solubilizing bacteria and their role in plant growth promotion Hilda,R.;F.Reyanldo https://doi.org/10.1016/S0734-9750(99)00014-2
  8. Arch. Microbiol. v.151 The separate roles of PQQ and apo-enzyme synthesis in the regulation of glucose dehydrogenase activity in Klebsiella pneumoniae NCTC 418 Hommes,R.W.J.;P.T.D.Herman;P.W.Postma;D.W.Tempest;O.M.Neijssel https://doi.org/10.1007/BF00413139
  9. Plant Analysis Handbook Johns,Jr.,J.B.;B.Wolf;H.A.Mills
  10. J. Microbiol. Biotechnol. v.12 Identification of FM001 as plant growth-promoting substance from Acremonium strictum NJN1 culcure Jung,J.H.;D.M.Shin;W.C.Bae;S.K.Hong;J.W.Suh;S.H.Ko;B.C.Jeong
  11. J. Bacterol. v.101 Gluconate catabolism in Bradyrhizobium japonicum Keele,B.B.;P.B.Hamliton;G.Elkan
  12. Z. Pflanzenernaehr. Bodenkd. v.145 Influence of phosphate dissolving bacteria on the efficiency of super phosphate in a calcareous soil cultivated with Vicia faba Khalafallah,M.A.;M.S.M.Seber;H.A.Abdel-Maksoud https://doi.org/10.1002/jpln.19821450505
  13. FEMS Microbiol. Lett. v.159 Expression of genes from Rahnella aquatilis that are necessary for mineral phosphate solublilization in Escherichia coli Kim,K.Y.;D.Jordan;H.B.Krishnan https://doi.org/10.1111/j.1574-6968.1998.tb12850.x
  14. Proceedings of the 4th International conference on Plant Pathogenic Bacteria v.Ⅱ Plant growth promoting rhizobacteria on radishes. In Station de Pathologie vegetale et Phyto-bacteriologie, editor Kloepper,J.W.;M.N.Schroth
  15. J. Microbiol. Biotechnol. v.12 A plant growth-promoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy Lim,H.S.;J.M.Lee;S.D.Kim
  16. Methods Enzymol. v.89 D-Glucose dehydrogenase from Pseudomonas fluorescens Matsushita,K.;M.Ameyama
  17. Arch. Microbiol. v.105 Production of gluconic acid and 2-ketogluconic acid by Klebsiella aerogenes Neijssel,O.M.;D.W.Tempest https://doi.org/10.1007/BF00447135
  18. FEMS Microbiol. Lett. v.20 Glucose metabolism by K$^+$-limited Klebsiella aerogenes; evidence for the involvement of a quinoprotein glucose dehydrogenase Neijssel,O.M.;D.W.Tempest;P.W.Postma;J.A.Duine;J. Frank Jzn https://doi.org/10.1111/j.1574-6968.1983.tb00085.x
  19. Methods of Soil anaysis, Chemical and Microbiological Properties Phosphorus Olsen,S.R.;L.E.Sommers;Page,A.L.(ed.);R.H.Miller(ed.);D.R.Keeney(ed.)
  20. Arch. Microbiol. v.159 Gluconate metabolism of Klebsiella pneumoniae NCTC 418 grown in chemostat culture Simons,J.A.;M. J. Teixeria de Mattos;O.M.Neijssel https://doi.org/10.1007/BF00290922
  21. Arch. Microbiol. v.137 Gluconate catabolism in cowpea rhizobia: Evidence for a ketogluconate pathway Stowers,M.D.;G.Elkan https://doi.org/10.1007/BF00425799
  22. Plant Soil v.31 Activity of phosphate-dissolving bacteria in Egyptian soils Taha,S.M.;S.A.Z.Mahmoud;A.H.El-Damaty;A.M.A.El-hafeg
  23. Arch. Microbiol. v.134 Metabolic and energetic aspects of growth of Klebsiella aerogenes NCTC 418 on glucose in anaerobic chemostat cultures Teixeria de Mattos, M. J.;D.W.Tempest https://doi.org/10.1007/BF00429412
  24. J. Gen. Microbiol. v.133 PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium and Rhizobium species Van Schie, B. J.;O. H. De Mooy;J.D.Linton;J. P. Van Dijkey;J.G.Keunen
  25. J. Bacteriol. v.163 Energy transduction by electron transfer via pyrroloquinonline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (ver lwoffi) Van Schie, K. J.;J.P.Hellingwerf;M. G. L. van Dijken;J.M.Elferink;L. S. Van Dijl;J.g.Kuenen;W.N.Konings
  26. Methods of Soil Analysis, Chemical and Microbiological Properties(2nd ed.) Rhizobium Weaver,R.W.;L.R.Frederick;Stevenson,F.J.(ed.)