Synthesis and Hydrophilicities of Poly(ethylene 2,6-naphthalate)/ Poly(ethylene glycol) Copolymers

  • Son, Jun-Sik (Department of Textile Engineering, Dankook University) ;
  • Ji, Dong-Sun (Department of Textile Engineering, Dankook University)
  • 발행 : 2003.12.01

초록

Poly(ethylene 2,6-naphthalate) (PEN)/Poly(ethylene glycol) (PEG) copolymers were synthesized by two step reaction during the melt copolymerization process. The first step was the esterification reaction of dimethyl-2,6-naphthalenedicarbox-ylate (2,6-NDC) and ethylene glycol (EG). The second step was the condensation polymerization of bishydroxyethylnaphthalate (BHEN) and PEG. The copolymers contained 10 mol% of PEG units with different molecular weights. Structures and thermal properties of the copolymers were studied by using $^1{H-NMR}$, DSC, TGA, etc. Especially, while the intrinsic viscosities of PEN/PEG copolymers increased with increasing molecular weights of PEG, but the glass transition temperature, the cold crystallization temperature, and the weight loss temperature of the copolymers decreased with increasing molecular weights of PEG. Consequently, the hydrophilicities by means of contact angle measurement and moisture content of the copolymer films were found to be significantly improved with increasing molecular weights of PEG.

키워드

참고문헌

  1. H. Zhang and I. M. Ward, Macromolecules, 28, 4179 (1995)
  2. M. Guo and H. G. Zachmann, Macromolecules, 30, 2746-2750 (1997) https://doi.org/10.1021/ma9613695
  3. U. Stier, F. Gahr, and W. Oppermann, J. Appl. Polym. Sci., 80, 2039-2046 (2001) https://doi.org/10.1002/app.1302
  4. G. Botelho, A. Queriros, and P. Gijsman, Polym. Degrad. Stab., 70, 299-304 (2000) https://doi.org/10.1016/S0141-3910(00)00129-4
  5. L. D. Lillwitz, Appl. Catalysis, A : General, 221, 337-358 (2001) https://doi.org/10.1016/S0926-860X(01)00809-2
  6. G. P. Karayannidis, G. Z. Papageorgiou, D. N. Bikiaris, and E. V.Tourasanidis, Polymer, 39, 4129 (1998) https://doi.org/10.1016/S0032-3861(98)00011-1
  7. Y M. Sun and C. S. Wang, J. Polym. Sci., 34, 1783 (1996) https://doi.org/10.1002/(SICI)1099-0518(19960715)34:9<1783::AID-POLA16>3.0.CO;2-2
  8. K. Nakamae, T. Nishino, K. Tada, T. Kanamoto, and M. Ito, Polymer, 34, 3322-3324 (1993) https://doi.org/10.1016/0032-3861(93)90411-3
  9. S. Z. D. Cheng and B. Wunderlick, Macromolecules, 21, 789 (1988) https://doi.org/10.1021/ma00181a040
  10. S. Buchnner, D. Wiswe, and H. G. Zachmann, Polymer, 30,480 (1989) https://doi.org/10.1016/0032-3861(89)90018-9
  11. L. S. Park and J. H. Yoon, Polymer (Korea), 18, 700 (1994)
  12. S. S. Park and S. S. Im, Polymer (Korea), 18, 708 (1994)
  13. H. Zhang, A. Rankin, and I. M. Ward, Polymer, 37, 1079-1085 (1996) https://doi.org/10.1016/0032-3861(96)80832-9
  14. R. Jakeways, J. L. Klein, and I. M. Ward, Polymer, 37, 3761-3762 (1996) https://doi.org/10.1016/0032-3861(96)00113-9
  15. C. G. Cho, S. W. Woo, K. L. Choi, and S. S. Hwang, Polymer (Korea), 21, 821 (1997)
  16. S. W. Woo and C. G. Cho, J. Korean Fiber Soc., 36,211 (1999)
  17. G. Wu and J. A. Cuculo, Polymer, 40, 1011-1018 (1999) https://doi.org/10.1016/S0032-3861(98)00317-6
  18. N. Bhattarai, H. Y. Kim, D. R. Lee, and S. J. Park, Polym. Int., 52, 6-14 (2003) https://doi.org/10.1002/pi.923
  19. J. M. Raquez, P. Degee, R. Narayan, and P. Dubois, Macromol. Rapid. Commun., 21, 1063 (2000) https://doi.org/10.1002/1521-3927(20001001)21:15<1063::AID-MARC1063>3.0.CO;2-B