γ -Connectedness in fuzzy topological spaces

I. M. Hanafy

Department of Mathematics, Faculty of Education, Suez Canal University, El-Arish, Egypt

Abstract

The aim of this paper is to introduce the concept γ -connectedness in fuzzy topological spaces. We also investigate some interrelations between this types of fuzzy connectedness together with the preservation properties under some types of fuzzy continuity. A comparison between some types of connectedness in fuzzy topological spaces is of interest.

Key words: Fuzzy topological spaces, fuzzy γ - continuity, γ - separated fuzzy sets, γ - connected fuzzy sets, δ - connected fuzzy sets, θ - connected fuzzy sets.

1. Introduction and preliminaries

In [5], we introduce a new class of fuzzy functions called fuzzy γ -continuous functions, which contains the class of fuzzy continuous functions. We investigated several properties concerning such functions. The purpose of this paper is to introduce and study the concept of γ -connected fuzzy sets by the help of fuzzy γ -closure [5], and study the relationships between γ -connected fuzzy sets and such subsets in fuzzy topological spaces.

Throughout the paper, X and Y always represent fuzzy topological spaces (fts, for short) in Chang's sense [1]. For a fuzzy set U in X, clU, δclU , θclU and U' will respectively denote, the closure, δ – closure, θ – closure and complement of U. A fuzzy set U in a fts X is said to be quasi-coincident with a fuzzy set V, denoted by UqV, if there exists $x \in X$ such that U(x) + V(x) > 1 [6]. It is Known that $U \leq V$ iff U and V' are not quasi-coincident, denoted by UqV' [6].

Definition 1.1 [5]. A fuzzy set U in a fts X is called γ -open (γ -closed) if

 $U \le clintU \lor intclU \quad (U \ge clintU \land intclU).$

Definition 1.2 [5]. For a fuzzy set U in a fts X, fuzzy γ -closure (γcl , for short) is defined as follows: $\gamma cl U = \wedge \{G: G \text{ is } \gamma - \text{closed fuzzy set, } U \leq G\}.$

Definition 1.3 [5]. A function $f: X \to Y$ is called fuzzy γ – continuous if for each open fuzzy set V in Y, $f^{-1}(V)$ is γ – open fuzzy set in X.

Definition 1.4 [5]. A function $f: X \to Y$ is called fuzzy γ -closed if the image of each closed fuzzy set in X is γ -closed fuzzy set in Y.

Definition 1.5 [3,4]. Two non-empty fuzzy sets U and V in a fts X are called separated (resp. δ – separated, θ – separated) fuzzy sets if $U\overline{q}clV$ and $V\overline{q}clU$ (resp. $U\overline{q}\delta clV$ and $V\overline{q}\delta clU$, $U\overline{q}\theta clV$ and $V\overline{q}\theta clU$).

Remark 1.6 [8]. For any two non-empty fuzzy sets U and V the following implications hold:

 $\theta-$ separated fuzzy set \Rightarrow $\delta-$ separated fuzzy set \Rightarrow separated fuzzy set.

Definition 1.7 [3,4]. A fuzzy set U in a fts X is called connected (resp. δ – connected, θ – connected) fuzzy set if U cannot be expressed as the union of two separated (resp. δ – separated, θ – separated) fuzzy sets.

Remark 1.8 [8]. For a fuzzy set U, the following implications hold:

connected fuzzy set \Rightarrow $\delta-$ connected fuzzy set \Rightarrow $\theta-$ connected fuzzy set.

Definition 1.9 [7]. A fts is called fuzzy regular if for each open fuzzy set V and each fuzzy point pqV, there exists an open fuzzy set U such that $pqU \le clU \le V$.

2. γ – separated fuzzy sets

Definition 2.1. Two non-empty fuzzy sets U and V in a fts X are called γ - separated fuzzy sets if $U\overline{q}\gamma clV$ and $V\overline{q}\gamma clU$.

Remark 2.2. For any two non-empty fuzzy sets U and V, since $\gamma clU \le clU \le bclU \le \theta clU$ and so V, the following implications hold:

 $\theta-$ separated fuzzy set $\Rightarrow \delta-$ separated fuzzy set \Rightarrow separated fuzzy set $\Rightarrow \gamma-$ separated fuzzy set.

Theorem 2.3. Let U,V be non-empty fuzzy sets in a fts X. (i) if U and V are γ -separated fuzzy sets and U_1,V_1 are non-empty fuzzy sets such that $U_1 \leq U$ and $V_1 \leq V$, then U_1 and V_1 are also γ -separated fuzzy sets.

- (ii) if UqV and either both are γ -open fuzzy sets or both are γ -closed fuzzy sets, then U and V are γ -separated fuzzy sets.
- (iii) if U and V are either both γ -open fuzzy sets or both are γ closed fuzzy sets and if $A=U\cap V'$ and $B=V\cap U'$, then A and B are γ -separated fuzzy sets.
- **Proof.** (i) Since $U_1 \le U$, we have $\gamma clU_1 \le \gamma clU$, then $V \overline{q} \gamma clU \Rightarrow V_1 \overline{q} \gamma clU \Rightarrow V_1 \overline{q} \gamma clU$. Similarly $U_1 \overline{q} \gamma clV_1$. Hence U_1 and V_1 are γ -separated fuzzy sets.
- (ii) When U and V are γ -closed fuzzy sets, then $U = \gamma clU$ and $V = \gamma clV$. Since U = qV, we have $\gamma clU = qV$. When U and V are γ -open fuzzy sets, U' and V' are γ -closed fuzzy sets. Then $U = qV \Rightarrow U \leq V' \Rightarrow \gamma clU \leq \gamma clV' = V' \Rightarrow \gamma clU = qV$. Similarly, $\gamma clV = qU$. Hence U and V are γ -separated fuzzy sets.
- (iii) When U and V are γ -open fuzzy sets, U' and V' are γ -closed fuzzy sets. Since $A \le V'$, $\gamma cl A \le \gamma cl V' = V'$ and so $\gamma cl A \overline{q} V$. Thus $B \overline{q} \gamma cl A$. Similarly, $A \overline{q} \gamma cl B$. Hence A and B are γ -separated fuzzy sets.

When U and V are γ -open fuzzy sets, $U = \gamma cl U$ and $V = \gamma cl V$. Since $A \le V'$, $\gamma cl V = \overline{q} A$ and hence $\gamma cl B = \overline{q} A$. Similarly $\gamma cl A = \overline{q} B$. Hence A and B are γ -separated fuzzy sets.

Theorem 2.4. Let U and V be non-empty fuzzy sets of a fts X, then U and V are γ -separated fuzzy sets iff there exist two γ -open fuzzy sets A and B such that $U \le A$, $V \le B$, U = 0 Q A.

Proof. Let U and V be γ -separated fuzzy sets. Putting $B = (\gamma cl U)'$ and $A = (\gamma cl V)'$, then A and B are γ -open fuzzy sets such that $U \le A$, $V \le B$, U = 0 0 and V = 0 0.

Conversely, let A and B be γ -open fuzzy sets such that $U \le A$, $V \le B$, U = 0 and V = 0. Since B' and A' are γ -closed fuzzy sets, we have $\gamma clU \le B' \le V'$ and $\gamma clV \le A' \le U'$. Thus $\gamma clU = 0$ 0 and $\gamma clV = 0$ 1. Hence U1 and V2 are γ -separated fuzzy sets.

3. γ – connected fuzzy sets

Definition 3.1. A fuzzy set which cannot be expressed as the union of two γ – separated fuzzy sets is said to be a γ – connected fuzzy set.

Remark 3.2. From the above definition and Remark 1.8, the following implications hold:

 $\gamma-$ connected fuzzy set \Rightarrow connected fuzzy set \Rightarrow $\delta-$ connected fuzzy set \Rightarrow $\theta-$ connected fuzzy set.

Lemma 3.3. A fts X is fuzzy regular iff $\gamma cl U = cl U = \delta cl U = \theta cl U$, for each fuzzy set U in X.

Proof. Obvious (see [2]).

Theorem 3.4. For a fuzzy set U in a fuzzy regular space X, the following are equivalent:

- (i) U is γ connected fuzzy set .
- (ii) U is connected fuzzy set .
- (iii) U is δ connected fuzzy set .
- (iv) U is θ connected fuzzy set.

Proof. Follows directly by virtue of Lemma 3.3.

Theorem 3.5. In a fts X, if U is γ -connected fuzzy set, then γclU is so.

Proof. Suppose that γclU is not γ – connected fuzzy set, then there are two non-empty γ – separated fuzzy sets A and B in X such that $\gamma cl\ U = A \cup B$. Now, from $U = (A \cap U) \cup (B \cap U)$ and $\gamma cl\ (A \cap U) \leq \gamma cl\ A$, $\gamma cl\ (B \cap U) \leq \gamma cl\ B$ and $Aq\ B$, we obtain $\gamma cl\ (A \cap B)q\ B$. Hence $\gamma cl\ (A \cap U)q\ (B \cap U)$. Similarly $\gamma cl\ (B \cap U)q\ (A \cap U)$. Therefore U is not γ – connected fuzzy set. Hence the result.

Theorem 3.6. Let U be a non-empty γ – connected fuzzy set in a fts X. If U is contained in the union of two γ – separated fuzzy sets A and B, then exactely one of the following conditions (i) and (ii) holds:

- (i) $U \le A$ and $U \cap B = 0_X$.
- (ii) $U \leq B$ and $U \cap A = 0_x$.

Proof. We first note that when $U \cap B = 0_x$, Then $U \le A$, since $U \le A \cup B$. Similarly, when $U \cap A = 0_x$, we have $U \le B$. Since $U \le A \cup B$, both $U \cap A = 0_x$ and $U \cap B = 0_x$ cannot hold simultaneously. Again if $U \cap A \ne 0_x$ and $U \cap B \ne 0_x$, then by Theorem 2.3 (i), $U \cap A$ and $U \cap B$ are γ — separated fuzzy sets such that $U = (U \cap A) \cup (U \cap B)$,

contradicting the γ -connectedness of a fuzzy set U. Hence exactly one of the conditions (i) and (ii) must hold.

Theorem 3.7. Let $\{U_j: j\in J\}$ be a collection of γ – connected fuzzy sets in a fts X. If there exists $k\in J$ such that $U_j\cap U_k\neq 0_X$ for each $j\in J$, then $U=\{U_j: j\in J\}$ is γ – connected fuzzy set.

Proof. Suppose that U is not γ -connected fuzzy set. Then there exist γ - separated fuzzy sets A and B such that $U=A\cup B$. By Theorem 3.4, we have either (i) $U_j \leq A$ with $U_j \cap B = 0_{\chi}$ or (ii) $U_j \leq B$ with $U_j \cap A = 0_{\chi}$ for each $j \in J$. Similarly, either (iii) $U_k \leq B$ with $U_k \cap A = 0_{\chi}$ or (iv) $U_k \leq A$ with $U_k \cap B = 0_{\chi}$. We may assume, without loss of generality, that U_j is non-empty for each $j \in J$, and hence exactly one of (iii) and (iv) will hold. Since $U_j \cap U_k \neq 0_{\chi}$ for each $j \in J$, the conditions (i) and (iii) cannot hold, and similarly (ii) and (iv) cannot hold simultaneously. If (i) and (iv) hold, then $U_j \leq A$ with $U_j \cap B = 0_{\chi}$ for each $j \in J$. Then $U \leq A$ and $U \cap B = 0_{\chi}$ and thus $B = 0_{\chi}$, a contradiction. Similarly, if (ii) and (iii) hold, then we have $A = 0_{\chi}$, a contradiction. Hence the result.

Theorem 3.8. If a function $f: X \to Y$ is fuzzy γ —continuous and U is γ —connected fuzzy set relative to X, then f(U) is connected fuzzy set relative to Y.

Proof. Suppose that f(U) is not connected fuzzy set in Y, there exists two separated fuzzy sets A and B relative to Ysuch that $f(U) = A \cup B$. Then there exist open fuzzy sets G and H in Y such that $A \le G$, $B \le H$, $A = \overline{G}H$ and $B = \overline{G}G$. Since f is fuzzy γ – continuous, $f^{-1}(G)$ and $f^{-1}(H)$ are γ - open fuzzy sets in X such that $f^{-1}(A)$ $f^{-1}(G), \quad f^{-1}(B) \le$ $f^{-1}(H)$, $f^{-1}(A)\overline{q}$ $f^{-1}(H)$ and $f^{-1}(G)$. Thus $f^{-1}(A)$ and $f^{-1}(B)$ $f^{-1}(B)q$ γ - separated fuzzy sets in X from Theorem 2.4, and $U = f^{-1}(f(U)) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$. Hence this is contrary to the fact that U is γ -connected fuzzy set. Therefore f(U) must be connected fuzzy set.

Theorem 3.9. If a bijective function $f: X \to Y$ is fuzzy γ -closed and U is γ -connected fuzzy set relative to Y, then $f^{-1}(U)$ is connected fuzzy set relative to X.

Proof. Suppose that $f^{-1}(U)$ is not connected fuzzy set in X, there exists two separated fuzzy sets A and B relative to X such that $f^{-1}(U) = A \cup B$. Then there exist open fuzzy sets G and H in X such that $A \le G$, $B \le H$, A = H and B = G. Since G is fuzzy G closed function, G and G closed fuzzy sets in G such that G such that G and G such that G closed fuzzy sets in G

 $f(cl\,B)\overline{q}$ $f(cl\,G)$. Since $f(cl\,B)\overline{q}$ $f(cl\,G)$ implies $f(B)\overline{q}$ f(G). Thus f(A) and f(B) are γ -separated fuzzy sets in Y from Theorem 2.3 (ii), and $U=f(f^{-1}(U))=f(A\cup B)=f(A)\cup f(B)$. Hence this is contrary to the fact that U is γ -connected fuzzy set. Therefore $f^{-1}(U)$ must be connected fuzzy set.

Definition 3.10. A function $f: X \to Y$ is called fuzzy γ - irresolute (fuzzy strongly γ - irresolute) if the inverse image of each γ - open fuzzy set in Y is γ - open (open) in X.

Lemma 3.11. Let $f: X \to Y$ be a function then the following are equivalent:

- (i) f is fuzzy γ irresolute.
- (ii) The inverse image of each γ -closed fuzzy set in Y is γ -closed in X.
- (iii) $\gamma cl f^{-1}(V) \le f^{-1}(\gamma cl V) \le f^{-1}(cl V)$.

Proof. Obvious.

Theorem 3.12. [7] . If a function $f: X \to Y$ is fuzzy γ -irresolute and U is γ -connected fuzzy set relative to X, then f(U) is γ -connected relative to Y.

Proof. By using Definition 3.10 and Lemma 3.11, it is a direct consequence of Theorem 3.8.

Definition 3.13. A function $f: X \to Y$ is called fuzzy $M\gamma$ —open (fuzzy $M\gamma$ —closed) if the image of each γ —open (γ —closed) fuzzy set in X is γ —open (γ —closed) in Y.

Definition 3.14. Two fts's X and Y are called fuzzy $\gamma-$ homeomorphic if there exists a bijective function $f:X\to Y$ such that f is fuzzy $\gamma-$ irresolute and fuzzy $M\gamma-$ open. Such function f is called a fuzzy $\gamma-$ homeomorphism.

Remark 3.15. It is clear that each fuzzy homeomorphism is fuzzy γ -homeomorphism while the converse may not be true.

Example 3.16. An identity fuzzy function f from any fts X to a Discrete fts Y is fuzzy γ -homeomorphism but not fuzzy homeomorphism.

Definition 3.17. A function $f: X \to Y$ is called fuzzy strongly $M\gamma$ – open (fuzzy strongly $M\gamma$ – closed) if the image of each γ – open (γ – closed) fuzzy set in X is open (closed) in Y.

From the above definitions one can easily obtain the following theorems.

Theorem 3.18. Let a bijective function $f: X \to Y$ be a fuzzy $M\gamma$ - closed and U be a γ - connected fuzzy set relative to Y, then $f^{-1}(U)$ is γ - connected relative to X.

Proof. Obvious.

Theorem 3.19. Let a function $f: X \to Y$ be a fuzzy γ homeomorphism, then G is γ connected fuzzy set relative to X (G is γ connected fuzzy set relative to Y) iff f(G) is γ connected fuzzy set relative to Y ($f^{-1}(G)$ is γ connected fuzzy set relative to X).

Proof. Obvious.

Corollary 3.20. Let a function $f: X \to Y$ be a fuzzy homeomorphism, then G is γ -connected fuzzy set relative to X (G is γ -connected fuzzy set relative to Y) iff f(G) is γ -connected fuzzy set relative to Y ($f^{-1}(G)$ is γ -connected fuzzy set relative to X).

Proof. It is obvious from Remark 3.15.

Theorem 3.21. Let X and Y be fuzzy γ – homeomorphic, then X is fuzzy γ – connected iff Y is fuzzy γ – connected.

Proof. Obvious.

Theorem 3.22. If a function $f: X \to Y$ is a fuzzy strongly $M\gamma$ – continuous and G is connected fuzzy set relative to X, then f(G) is γ – connected fuzzy set relative to Y.

Proof. Obvious.

Theorem 3.23. Let a bijective function $f: X \to Y$ be a fuzzy strongly $M\gamma$ -closed and G is connected fuzzy set relative to Y, then $f^{-1}(G)$ is γ -connected fuzzy set relative to X.

References

- [1] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968) 182-190.
- [2] J.R. Choi, B.Y.Lee and J.H. Park, On fuzzy θ continuous mappings, Fuzzy Sets and Systems, 54(1993)107-114.
- [3] S. Ganguly and S. Saha, On separation axioms and separation of connected sets in fuzzy topological spaces, Bull. Calcutta Math. Soc. 79(1987)215-225.
- [4] S. Ganguly and S. Saha, A note on δ -continuity and δ -connected sets in fuzzy set theory, Simon Stevin 62(1988)127-141.
- [5] I.M.Hanafy, Fuzzy γ open sets and fuzzy γ continuity, J. Fuzzy Math., Vol.7 No 2.(1999),419-430.
- [6] P. P. Ming and L.Y. Ming, Fuzzy topology I Neighborhood structure of a fuzzy point and Moore Smith convergence, J. Math. Anal. Appl. 76(1980),571-599.
- [7] M.N. Mukherjee and B. Ghosh, Fuzzy semiregularization topologies and fuzzy submaximal spaces, Fuzzy Sets and Systems 44(1991)283-294.
- [8] J.H. Park, B.Y. Lee and J.R. Choi, Fuzzy θ connectedness, Fuzzy Sets and Systems 59(1993)237-244.