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Abstract

The aim of this paper is to introduce the concept <y —connectedness in fuzzy topological spaces. We also investigate some interre

lations between this types of fuzzy connectedness together with the preservation properties under some types of fuzzy continuity.

A comparison between some types of connectedness in fuzzy topological spaces is of interest.
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1. Introduction and preliminaries

In [5], we introduce a new class of fuzzy functions called
fuzzy ~—continuous functions, which contains the class of
fuzzy continuous functions. We investigated several properties
concerning such functions. The purpose of this paper is to
introduce and study the concept of ~— connected fuzzy sets by
the help of fuzzy ~—closure [5], and study the relationships
between ~—connected fuzzy sets and such subsets in fuzzy
topological spaces.

Throughout the paper, X and Y always represent fuzzy
topological spaces (fts, for short) in Chang‘s sense [I]. For a
X, clU, 6clU,0clU  and U’ will
respectively denote, the closure, §—closure, 6~ closure and

fuzzy set U in

complement of U. A fuzzy set U ina fts X is said to be
quasi-coincident with a fuzzy set ¥, denoted by UgV, if
there exists xeX such that U(x)+¥(x)>1[6]. It is Known
that U<V iff U and V' are not quasi-coincident, denoted
by Ugr’ 6]

Definition 1.1 [5). A fuzzy set U in a fis X is called
~—open (v — closed) if

U<clintU VintelU (U >clintU ANintelU ).

Definition 1.2 [5|. For a fuzzy set U in a fts X, fuzzy
~ —closure (vcl, for short) is defined as follows:

~velU =A{G:G is ~—closed fuzzy set, U <G}.

Definition 1.3 [5]. A function f:X—7Y is called fuzzy
v — continuous if for each open fuzzy set ¥ in ¥, f'(¥) is
v —open fuzzy setin X.

Definition 1.4 [5] A function f:X—7Y is called fuzzy

y—closed if the image of each closed fuzzy set in X is
v —closed fuzzy setin Y.
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Definition 1.5 [3,4). Two non-empty fuzzy sets U and ¥V in
called
separated, § — separated) fuzzy sets if UgelV and VgclU
(resp. UgqéclV and VgéclU, UgbelV and VqéclU ).

a fis X are separated  (resp. 65—

Remark 1.6 [8]. For any two non-empty fuzzy sets U and
¥ the following implications hold:

0 — separated fuzzy set = §— separated fuzzy set =
separated fuzzy set.

Definition 1.7 [3,4]. A fuzzy set U in a fts X is called
connected ( resp. §—connected, 6-— connected ) fuzzy set if
U cannot be expressed as the union of two separated ( resp.
6 —separated, 60— separated ) fuzzy sets.

Remark 1.8 [8]. For a fuzzy set U
implications hold:

, the following
connected fuzzy set = 6— connected fuzzy set =
& — connected fuzzy set.

Definition 1.9 [7]. A fis is called fuzzy regular if for each open
fuzzy set ¥ and each fuzzy point pgV, there exists an open
fuzzy set U suchthat pqU <clU<V.

2. v-separated fuzzy sets

Definition 2.1. Two non-empty fuzzy sets U and ¥ ina fis
X are called ~— separated fuzzy sets if UgyclV and
VgrelU.

Remark 2.2. For any two non-empty fuzzy sets U and V,
since yclU< clU<8clU<6clU and so ¥, the following
implications hold:



60— separated fuzzy set =>6- separated fuzzy set =
separated fuzzy set = ~—separated fuzzy set.

Theorem 2.3. Let U,V be non-empty fuzzy sets ina fts X.
(1) if U and ¥ are ~-—separated fuzzy sets and U, V, are
non-empty fuzzy sets such that U, <U and ¥, <V, then U,
and V, arealso ~— separated fuzzy sets.

(ii) if Ug V¥ and either both are — open fuzzy sets or both
are v-—closed fuzzy sets, then U and V are - separated
fuzzy sets.

(iii) if U and V are either both ~—open fuzzy sets or both
A=UnV’' and
B=VnNU’ ,then 4 and B are ~—separated fuzzy sets.

are - closed fuzzy sets and if

Proof. (i) Since U,<U , we have ~clU, <~clU, then

VavyelU = V,gylU = V,gvelU, Similarly U, q~elV,

Hence U, and ¥, are -~ —separated fuzzy sets.

(i) When U and V are ~— closed fuzzy sets, then
U=~cU and ¥V =~clV. Since UgV, we have ~clUgV.
When U and ¥V are ~v—open fuzzy sets, U’ and V' are
y— closed fuzzy sets. Then
UgV = U<V’ = ~dU<~eV' =V = ylUqV.
velV qU .Hence U and ¥ are ~—separated fuzzy sets.

Similarly,

(iii) When U and ¥ are y—open fuzzy sets, U’ and V’
are ~—closed fuzzy sets. Since A<V’ yel A< velV' =V’ and
so vl AqV. Thus Bgnci A Similarly , Ag~clB. Hence 4
and B are - separated fuzzy sets.

When ¢ and ¥V are y—open fuzzy sets, U=~cU and
V=nclV. Since A<V', yclV g A and hence ~vc/B g A
Similarly ~c¢/4 ¢ B Hence 4 and B are ~— separated
fuzzy sets.

Theorem 2.4.Let U and ¥V be non-empty fuzzy sets of a fts
X, then U and vV are ~— separated fuzzy sets iff there
exist two vy-—open fuzzy sets 4 and B such that U<4 |,
V<B UgB and Vg4

Proof. Let U and ¥ be ~—separated fuzzy sets. Putting
B=(yclUY and A=(vclV), then 4 and B are ~—open
fuzzy sets such that U<4 |, V<B UgqB and VgA

Conversely, let 4 and B be ~—open fuzzy sets such that
U<A, V<B UgB and VgA Since B’ and A4 are
v— closed fuzzy sets, we have ~dU<B' <V’ and
yelV <A’ <U'. Thus ~cdlUgqV and ~clVgqU. Hence U
and ¥ are - — separated fuzzy sets.
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3. - connected fuzzy sets

Definition 3.1. A fuzzy set which cannot be expressed as the
union of two +— separated fuzzy sets is said to be a
v — connected fuzzy set.

Remark 3.2. From the above definition and Remark 1.8, the
following implications hold:

~v— connected fuzzy set = connected fuzzy set =
6 —connected fuzzy set = @— connected fuzzy set.

Lemma 33. A fts X is fuzzy regular iff
yelU =clU =6clU =0clU, for each fuzzyset U in X.

Proof. Obvious (see [2]).

Theorem 3.4. For a fuzzy set U in a fuzzy regular space X,
the following are equivalent:

(i) U is ~—connected fuzzy set.

(ii) U is connected fuzzy set .

(ili) U is - connected fuzzy set.

(iv) U 1is 6~ connected fuzzy set .

Proof. Follows directly by virtue of Lemma 3.3.

Theorem 3.5. In a fts X, if U is ~—connected fuzzy set,
then ~c/U is so.

Proof. Suppose that c/U isnot ~— connected fuzzy set,
then there are two non-empty -+ — separated fuzzy sets 4 and
B in X suchthat v/ U=4A4UB. Now, from
U=(AnU)YUu(BNU) and

el (ANU) < yel 4, vl (BNUY< el B and AgB, we obtain
vel(ANB)gB. Hence ~cl(ANU)g(BNU). Similarly

el (BNU)g(ANU). Therefore U isnot v — connected fuzzy
set. Hence the result.

Theorem 3.6. Let U be a non-empty ~— connected fuzzy
set in a fts X. If U {is contained in the union of two
v — separated fuzzy sets 4 and B, then exactely one of the
following conditions (i) and (ii) holds:

(i) U<4 and UNB=0,.

(ii) U<B and UNA4=0,.

Proof. We first note that when UnB=0,, Then U<4,
since U<AUB. Similarly, when Un4=0,,
U<B. Since U<AUB, both Un4=0, and UNB=0,

cannot hold simultaneously. Again if UnN4=0, and
UNB=0,, then by Theorem 2.3 (i), UnA4 and UNB are
v— separated fuzzy sets such that U=({UnNAUWUNB),

we have
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contradicting the ~— connectedness of a fuzzy set U. Hence
exactly one of the conditions (i) and (ii) must hold.

Theorem 3.7. Let {U,:jeJ} be a collection of
vy—connected fuzzy sets in a fts X. If there exists keJ

such that U,NU, =0, for each jeJ, then U={U,:jeJ}

is -y —connected fuzzy set.

Proof. Suppose that U is not - connected fuzzy set. Then
there exist - separated fuzzy sets 4 and B such that
U=A4UB. By Theorem 3.4, we have either (i) U, <4 with
U,NB=0, or(ii)) U <B with U,n4=0, for each je.
Similarly, either (iii) U,<B with U,NnA4=0, or (iv)
U,<4 with U,nB=0,. We may assume, without loss of
generality, that U, is non-empty for each jeJ, and hence
exactly one of (iii) and (iv) will hold. Since U,NU, =0, for
each jeJ, the conditions (i) and (iii) cannot hold, and
similarly (ii) and (iv) cannot hold simultaneously. If (i) and (iv)
hold , then U,<4 with U,nB=0, for each jeJ. Then
U<4 and UNnB=0, and thus B=0,, a contradiction.
Similarly, if (ii) and (iii) hold , then we have 4=0,, a
contradiction. Hence the result.

Theorem 3.8. If a function f:X-Y is fuzzy
v—continuous and U is +—connected fuzzy set relative to
X ,then f(U) is connected fuzzy set relative to Y.

Proof. Suppose that f(U) is not connected fuzzy set in Y,
there exists two separated fuzzy sets 4 and B relativeto Y
such that f(U)=AUB. Then there exist open fuzzy sets G
and H in Y such that A<G B<H, 4¢gH and BgqG.
Since £ is fuzzy ~v-continuous, f'(G) and f'(H) are

v— open fuzzy sets in X such that f'(4) <
G, 'eys sE), (g f(H) and
'(B)q @G . Thus f'(4) and f'(B) are

v — separated fuzzy sets in X from Theorem 2.4, and
U=f'(fU)= f'(4uB)= f'(4HU f'(B). Hence this
is contrary to the fact that U is +v— connected fuzzy set.
Therefore f(U) must be connected fuzzy set.

Theorem 3.9. If a bijective function f:X—Y is fuzzy
y—closed and U is - connected fuzzy set relative to Y,
then f~'(U) is connected fuzzy set relative to X.

Proof. Suppose that £ '(U) is not connected fuzzy set in X,
there exists two separated fuzzy sets 4 and B relative to
X suchthat f'(U)=AUB. Then there exist open fuzzy sets
G and H in X such that A<G,B<H, AqH and
BgG. Since f is fuzzy ~-closed function , f(c/G) and
f(clH) are ~—closed fuzzy sets in Y such that f(cl 4)
< fEG),  f(B)S f(lH), f(cdlA)q f(cIH) and
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fclB)yg  f(IG) . Since f(cIB)q f(cIG) implies f(B)gq
f(G). Thus f(4) and f(B) are ~—separated fuzzy sets in
Y from Theorem 23 (ii), and
U=f(f"'UN= fAUB)= f(HU f(B)
contrary to the fact that U is - connected fuzzy set.

Hence this is
Therefore f'(U) must be connected fuzzy set.

Definition 3.10. A function f:X—Y is called fuzzy
v — irresolute (fuzzy strongly ~— irresolute) if the inverse
image of each ~—open fuzzy setin Y is

v—open (open) in X.

Lemma 3.11. Let f:X —Y be a function then the following
are equivalent:

(i) f isfuzzy ~—irresolute.

(ii) The inverse image of each ~—closed fuzzy set in Y is
y—closedin X.

(i) el 7O (RAVIS A,

Proof. Obvious.

Theorem 3.12. [7] . If a function f:X—Y is fuzzy
«—irresolute and U is ~— connected fuzzy set relative to
X, then f(U) is ~—connected relative to Y.

Proof. By using Definition 3.10 and Lemma 3.11, it is a direct
consequence of Theorem 3.8.

Definition 3.13. A function f:X—Y is called fuzzy
M~y—open ( fuzzy M~vy- closed ) if the image of each
y—open ( y—closed ) fuzzy set in X is y—open ( y—
closed )in Y.

Definition 3.14. Two fts’s X and Y are called fuzzy
4 — homeomorphic if there exists a bijective function
f:X—Y such that f is fuzzy ~— irresolute and fuzzy
Such function s is «called a fuzzy
~ —homeomorphism.

M~ — open.

Remark 3.15. It is clear that each fuzzy homeomorphism is
fuzzy +—homeomorphism while the converse may not be true.

Example 3.16. An identity fuzzy function f from any fts
X to a Discrete fts Y is fuzzy ~—homeomorphism but not
fuzzy homeomorphism.

Definition 3.17 . A function f:X —Y is called fuzzy
strongly M-~y-—open ( fuzzy strongly M-~y—closed ) if the
image of each y—open ( y—closed ) fuzzy setin X isopen
(closed)in Y.



From the above definitions one can easily obtain the
following theorems.

Theorem 3.18. Let a bijective function f:X —Y be a fuzzy
M~y-—closed and U be a y—connected fuzzy set relative to
Y. then f'(U) is - connected relative to X.

Proof. Obvious.

Theorem 3.19. Let a function f:X—>Y be a fuzzy
y— homeomorphism, then G is +y— connected fuzzy set
relative to X ( G is - connected fuzzy set relative to
Y ) iff f(G) is ~— connected fuzzy set relative to Y

( £ '(G) is y-connected fuzzy set relativeto X ).
Proof. Obvious.

Corollary 3.20. Let a function f:X—Y be a fuzzy
homeomorphism, then G is - connected fuzzy set relative
to X ( G is y—connected fuzzy set relative to ¥ ) iff
f(G) is vy—connected fuzzy set relative to ¥ ( fY(G) is
~ —connected fuzzy set relative to X ).

Proof. It is obvious from Remark 3.15.
Theorem 3.21. Let X and Y be fuzzy ~—homeomorphic,

then X s
~ — connected.

fuzzy ~y— connected iff Y is fuzzy

Proof. Obvious.
Theorem 3.22. If a function f:X —7Y is a fuzzy strongly

M~ —continuous and G is connected fuzzy set relative to X ,
then f(G) is - connected fuzzy set relative to Y.
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Proof. Obvious.

Theorem 3.23. Let a bijective function f:X —Y be a fuzzy
strongly M~y—closed and G is connected fuzzy set relative
to ¥ ,then f%G) is ~—connected fuzzy set relative to X.
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