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Abstract

In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory surface. We assume all obstacles in
the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. When a chaos robot meets an obstacle in an Amold

equation or Chua’s equation trajectory, the obstacle reflects the robot.

We also show computer simulation results of Amold equation and Chua’s equation and random walk chaos trajectories with one or more
Van der Pol obstacles and compare the coverage rates of each trajectory. We show that the Chua’s equation is slightly more efficient in
coverage rates when two robots are used, and the optimal number of robots in either the Arnold equation or the Chua’s equation is also

examined.
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1.Introduction

CHAOS theory has been drawing a great deal of attention in
the scientific community for almost two decades. Remarkable
research efforts have been spent in recent years, trying to
export concepts from Physics and Mathematics into real world
engineering applications. Applications of chaos are being
actively studied in such areas as chaos control [1]-{2], chaos
synchronization and secure/crypto communication [3]-[7],
Chemistry [8], Biology [9] and robots and their related themes
[10].

Recently, Nakamura, Y. et al [10] proposed a chaotic mobile
robot where a mobile robot is equipped with a controller that
ensures chaotic motion and the dynamics of the mobile robot
are represented by an Arnold equation. They applied obstacles
in the chaotic trajectory, but they did not mention obstacle
avoidance methods.

In this paper, we propose a method to avoid obstacles using
unstable limit cycles in the chaos trajectory surface. We assume
that all obstacles in the chaos trajectory surface have a Van der
Pol equation with an unstable limit cycle. When chaos robots
meet obstacles among their arbitrary wandering in the chaos
trajectory, which is derived using chaos circuit equations such
as the Arnold equation or Chua’s equation, the obstacles reflect
the chaos robots.

Computer simulations also show multiple obstacles can be
avoided with an Arnold equation or Chua’s equation. The rate
of coverage from random walk, Arnold equation and Chua’s
equation trajectories was also compared and the amount of time
required for n robots to reach 90% coverage was computed.
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2. Chaotic Mobile Robot’s Equation

A. Mobile Robot
As the mathematical model of mobile robots, we assume a
two- wheeled mobile robot as shown in Fig. 1.

X

Fig. 1 two-wheeled mobile robot

Let the linear velocity of the robot v [m/s] and angular
velocity w[rad/s] be the inputs in the system. The state equation
of the two-wheeled mobile robot is written as follows:

X cos 7 0
= | sin 6 0 ( ” ) M
. @
2] 0 1
where (x,y) is the position of the robot and & is the angle of
the robot.

B. Chaos Equations

In order to generate chaotic motions for the mobile robot, we
apply chaos equations such as an Amold equation or Chua’s
circuit equation.
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1) Amold equation {10]
We define the Amold equation as follows:

¥, = A sin x, + C cos x,
¥, = B sin x, + A4 cos x, (2)
¥, = C sin x, + B cos «x

2 1

where A, B, C are constants. The Amold equation describes a
steady solution to the three-dimensional (3D) Euler equation
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which express the behaviors of noncompressive perfect fluids
on a 3D torus space. (X, X, x;) and (v, v, v;) denote the

position and velocity of particle and p, and ( f, f, f;) and

p denote the pressure, external force, and density,
respectively. It is known that the Arnold equation shows
periodic motion when one of the constant, for example C.is

Oor small and shows chaotic motion when C is large[14].

2) Chua’s Circuit Equation (2-Double Scroll)

Chua’s circuit is one of the simplest physical models that has
been widely investigated by mathematical, numerical and
experimental methods. One of the main attractions of Chua’s
circuit is that it can be easily built with less than a dozen
standard circuit components, and has often been referred to as
the “poor man’s chaos generator.” Since the Chua’s circuit is
endowed with an unusually rich repertoire of nonlinear
dynamical phenomena, it has become a universal paradigm for
chaos. The Chua’s circuit and their nonlinear resister are shown
on Fig. 2(a),2(b) respectively.
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Fig. 2. Chua circuit (a) , Nonlinear resistor (b)

We can derive the state equation of Chua’s circuit following
as from Fig. 2(a) and 2(b) and then we also can get the phase
plane looks like Fig. 3

('xlﬂg(xl))
= x - x , + x| (5)

where
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Fig. 3. Phase plane of Chua’s circuit

C. Embedding of Chaos circuit in the Robot

In order to embed the chaos equation into the mobile robot,
we define and use the Amold equation and Chua’s circuit
equation as follows.

1) Arnold equation
We define and use the following state variables:

X, = D y + C cos x
5 = D X + B sin x (6)
X, = 6
where B, C, and D are constant.
Substituting (1) into (2), we obtain a state equation on X -
J'CZ , and )53 as follows:
., = Dv + C cos X,
, = Dv + B sin x, O
X, = o
We now design the inputs as follows [10]:
v=A/D
. (8)
w = C sin x, + B cos x,

Finally, we can get the state equation of the mobile robot as
follows:
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X, = Asin x; + C cos «x,

X, = B sin x, + A4 cos x,

. . %)
X, = C sin x, + B cos x,

X =V cos x,

y =V sin x,

Equation (9) includes the Arnold equation. Fig.4 and 5 show
the phase plane of the gradients of the mobile robot of Arnold
equation in x-y plane and in 3D plane respectively.

In the Nakamura et al[10], they used phase plane
components such as (X, V),(y,2),(z,X) in the equation
(9), but we used gradients of each variables such as,

?ﬁ oy % for convenience in computation of chaotic path

ot ot ot

of the mobile robot .

& o

Fig. 4 Phase plane of gradient ( =,
Ot Ot ot

) of Arnold

equation in x-y plane and in 3D (v=1, A=1, B=0.5, C=0.5)

Fig. 5. Trajectory of the mobile robot of Arnold

equation ,when there is no boundary.

2) Chua’s Equation
Using the methods explained in equations (6)-(9), we can

obtain equation (10) with Chua’s equation embedded in the
mobile robot.
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X, 0= a (x, - g (x,)

x , = X, - x , + x|,

X, = = f x, (10)
x. = V  cos X

y =V sin x

Using equation (10), we obtain the embedding chaos robot
trajectories with Chua’s equation. Fig.6 and 7 show the phase
plane of the gradients of Chua’s equation, which is used for the
computational convenience as in the Amold equation.

Fig. 6. Phase portrait of gradient vector( @ , gy_ , g) in
Ot ot ot

Chua’s circuit.

Fig. 7. Trajectory of the mobile robot of Chua’s
equation ,when there is no boundary

i D. Mirror Mapping.

Equation (9) and (10) assume that the mobile robot moves in
a smooth state space without boundaries. However, real robots
move in space with boundaries like walls or surfaces of
obstacles. To avoid a boundary or obstacle, we consider mirror
mapping when the robots approach walls or obstacles using Eq.
(11) and (12). Whenever the robots approach a wall or obstacle,
we calculate the robots’ new position by using Eq. (11) or (12).

4 - C(.)S [ sin 6 an
sin o - cos o
_ 2 2
A =1/1+m [1 M " Zj 12
2m -1+ m

We can use equation (11) when the slope is infinity, such as
6 =90, and use equation (12) when the slope is not infinity.
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0 %

Fig. 7 Mirror mapping

3. Numerical Analysis of the Behavior of the
Chaos Robot

We investigated by numerical analysis whether the mobile
robot with the proposed controller actually behaves in a chaotic
manner. In order to computer simulation, we applied mirror
mapping and have shown it in fig. 7. The parameters and initial

conditions are used as follows:

A. Arnold equation case

Coefficients :

v=1[m/s], A= 0.5[1/s]}, B=0.25[1/s], C=0.25[1/s]
Initial conditions :

x =4, x,=35 x,=0, x=0, y=0

B. Chua‘ equation scase

Coefficients :
a=9, f=14.286
1 2
m0=—7, m, 7,7}’12 _—7, m; =m,

¢ =1c,=215, c; =3.6

Initial conditions:
x =4, x,=35, x;,=0, x=0, y=0

Fig. 8 shows the trajectories in which mirror mapping was
applied only on the outer wall. In this case, the chaos robot
has no obstacles, and we can confirm that the robot is
adequately meandering along the trajectories of Arnold and
Chua’s equation ,and are covering the whole space in their
chaotic manner.

4. The Chaotic Behavior of Chaos Robot with
mirror MAPPING and Obstacle

In this section, we will study avoidance behavior of a chaos
trajectory with obstacle mapping, relying on the Arnold
equation and Chua’s equation respectively.

(b)
Fig. 8. Trajectory of the mobile robot, when boundary exists.
(a)Amold equation, (b) Chua’s equation

Fig. 9 and 10 show that a chaos robot trajectories to which
mirror mapping was applied in the outer wall and in the inner
obstacles as well using Eq. (11) and (12), relying on Amold
equation (9) and Chua’s equation(10). The chaos robot has
two fixed obstacles, and we can confirm that the robot
adequately avoided the fixed obstacles in the Arnold and
Chua’s chaos robot trajectories.

Fig. 9 Arnold equation trajectories of chaos robot with
obstacle

Fig.10 Chua’s equation trajectories of chaos robot with
obstacles
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5. The mobile Robot with Van der Pol equation
obstacle.

In this section, we will discuss the mobile robot’s avoidance
of Van der Pol(VDP) equation obstacles. We assume the
obstacle has a VDP equation with an unstable limit cycle,
because in this condition, the mobile robot can not move

close to the obstacle and the obstacle is avoided.

A.. VDP equation as an obstacle
In order to represent an obstacle of the mobile robot, we
employ the VDP, which is written as follows:

X =y
y=(0-y> )y -x

(13)

From equation (11), we can get the following limit cycle as
shown in Fig. 11.

Fig. 11. Limit cycle of VDP

B. Magnitude of Distracting force from the obstacle
We consider the magnitude of distracting force from the
obstacle as follows:

B 0.325
(0.2D, +1)* @22

(14)

where D, is the distance between each effective obstacle and
the mobile robot.
We can also calculate the VDP obstacle direction vector as

follows:
'i:k xv - y
7, 0.5(1-(y, = »)' Ny, —»)-(x,=x)

as)
where (x_, v, ) are the coordinates of the center point of each

obstacle. Then we can calculate the magnitude of the VDP
direction vector (L), the magnitude of the moving vector of the
virtual robot (I} and the enlarged coordinates (I/2L) of the

magnitude of the virtual robot in VDP( X k' , ¥ ," ) as follows:

L = Wvdpz‘f- -)_).vdpz)

I = ‘\/(er+ y ., ) (16)
. x I , y . I

= Tghe e T T
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Finally, we can get the Total Distraction Vector (TDV) as
shown by the following equation.

v D D
(1- 2oy By,
zk Do)v DOX) amn
n
’ D, .. . D, .
zk (1 —Do)y+—_D0yk)
n

Using equations (14)-(17), we can calculate the avoidance
method of the obstacle in the Arnold equation and Chua’s
equation trajectories with one or more VDP obstacles.

In Fig. 12, the computer simulation result shows that the
chaos robot has two robots and a total of 5 VDP obstacles,
including two VDP obstacles at the origin in the Arnold
equation trajectories. We can see that the robot sufficiently

avoided the obstacles in the Arnold equation trajectories.

Fig. 12. Computer simulation result of obstacle avoidance
with 2 robots and 5 obstacles in Arnold equation trajectories.

In Fig. 13, the computer simulation result shows that the
chaos robot surface has two robots and total of 5 VDP
obstacles, including 2 VDP obstacles at the origin in the Chua’s
equation trajectory. We can see that the robot sufficiently
avoided the obstacles in the Chua’s equation trajectory.

Fig. 13. Computer simulation result of obstacle avoidance

with 2 robots and 5 obstacles in Chua’s equation trajectory.

C. The relationship between two mobile robots
At this point, we consider two mobile robots that have VDP
trajectories. If we do not consider the distance of the two
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mobile robots, they may happen to collide. So we embedded
the VDP equation in the movements of the mobile robot.

If the two robots approach each other, because they have a
VDP equation with an unstable limit cycle, the two robots repel
each other. As a result, the two robots never happen to collide.

We assume that if the distance between the two robots is less
than 0.5 m, the possibility of collision is higher than over 0.5 m.
Thus, we can say that two robots with less than 0.5m between
them have collided.

Fig. 14. Robot to avoid collision according to VDP equation

1) Amold equation

In Fig 15(a), we can see that when no other action was taken,
to the Arnold equation trajectory of each robot, the robots
collide at several instances (7008, 18008S, 28008, 40008, 60008,
63008 etc.).

In order to avoid collision, we applied a VDP equation to the
Arnold equation trajectory of each robot. In Fig 15(b), we can
see that there is no point when the robots collided. So, in
order to avoid collision between the two robots, we need to
apply a VDP equation in the Arnold equation trajectories.

() )

Fig. 15. Inter-robot distance (a) when no action taken, (b)

when VDP equation applied to the Arnold equation trajectories
of each robot

2) Chua’s equation

In Fig 16(a), we can see that when VDP trajectories are not
applied to the Chua’s equation trajectory of each robot, the
robots collided at several instances (1600S, 2300S, 3200S,
45008 etc.). In order to avoid collision between the two robots,
we applied VDP trajectories in each robot with a Chua’s
equation. In Fig 16(b), we can see that there were no collisions.

So, in order to avoid collision between the two robots, we can
also apply a VDP equation in the Chua’s equation chaos robot
system.

Distance batwesn rotiots

THE R 90 0. WA o R

(b)
Fig. 16. Inter-robot distance in which were not applied
(a) and were applied (b) VDP trajectories with Chua’s equation

6. The calculation of rate of coverage

In order to calculate the rate of coverage upon the surface,
we employed a random walk, an Arnold equation and a Chua’s
equation trajectory and then, we compared the coverage rate.

A. The comparison of robot trajectories

In Fig. 17, we can see the robot trajectories in the random
walk (a), the Arnold equation (b), and the Chua’s equation (c)
respectively.

Fig. 18 plots the position of the robot at regular interval
during 7500 second runtime in the random walk (a), the Arnold
equation (b), and the Chua’s equation (c) respectively. The
chaotic mobile robots with the Arnold and Chua’s equation
trajectories in Fig 18(b) and (c) were able to cover the work
space more efficiently compare to the random walk robot(a)

B. Comparison of coverage rate in random walk, Arnold
equation and Chua’s equation

Several initial values were used in each run of the random
walk, the Arnold equation and the Chua’s equation. To
compare the coverage rates of each equation, a Monte-Carlo
method was applied to obtain an average coverage rate.

In Fig. 19, we can see that the rate of coverage of the Chua
equation (2- Double Scroll) and Amold equation trajectories
are superior to the random walk, and among those, the Chua’s
equation is slightly superior to the Arnold equation in the
coverage rate. Until about 2500 seconds, the coverage rate of
the Arnold equation is slightly higher, but after 2500 seconds,
this situation is reversed.

211



International Journal of Fuzzy Logic and Intelligent Systems, vol. 3, no. 2, December 2003

Fig. 18. Plot of robot trajectories at every 10 steps in the
random robot walk (a), Arnold equation (b), and Chua’s
equation (c)

Arnold equation
______ - - Chua equation  |-----
— random walk

s = H

Fig. 19. Comparison of coverage rate of random walk,
Chua’s equation and Arnold equation

C. Comparison of coverage rate in Arnold equation and
Chua’s equation with two robots.

Fig. 17. Full robot trajectories in the random robot walk (a),
Arnold equation (b), Chua’s equation (c). In this section, we examine the rate of coverage in the

Arnold equation and Chua’s equation using two robots.

As explained before, a Monte-Carlos was applied to obtain
an average coverage rate for each trajectory. As seen in Fig. 20,
there is little difference in the efficiency of coverage between
the two trajectories, but overall the Chua’s equation trajectory
was more efficient in covering the work space.

,,,,,,,,,,,,,,,, --- 2 Robot of 2-Double Scroll
—— 2 Robagt of Arnold Egation

Fig. 20 Comparison of coverage rate in Arnold and Chua’s
equation in case of two robots.
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D. Optimal robot number

In order to verify the optimal robot number in the search area
surface, we calculated the amount of time required to reach
90% coverage for each set of robots.

Arnald Eqation Robot
- 2-Double Scroll Robot

Fig. 21. Number of robots versus the time require to reach 90%
coverage

As seen in Fig. 21, in either trajectory the optimal robot
number was three. Also, we can see that the Chua’s circuit
equation was slightly superior in efficiency.

7. Conclusion

In this paper, we proposed a chaotic mobile robot, which
employs a mobile robot with Arnold equation and Chua’s
equation trajectories, and also proposed an obstacle avoidance
method in which we assume that the obstacle has a Van der Pol
equation with an unstable limit cycle.

We designed robot trajectories such that the total dynamics
of the mobile robots was characterized by an Amold equation
or Chua’s equation, and we also designed the robot trajectories
to include an obstacle avoidance method. By the numerical
analysis, it was illustrated that obstacle avoidance methods
with a Van der Pol equation that has an unstable limit cycle
gave the best performance.

In order to make a chaotic behavior in the robot system, we
applied the Amold equation and Chua’s equation. As a result,
we realized that the rate of coverage of Chua’s equation is
superior to the Arnold equation. We also showed that the
optimal robot number in each trajectory was three.
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