DOI QR코드

DOI QR Code

The Cr*-Tree Supporting a Circular Property of Objects

객체의 순환 속성을 지원하는 Cr*-트리

  • 선휘준 (서남대학교 컴퓨터정보통신학과) ;
  • 김홍기 (동신대학교 컴퓨터학과)
  • Published : 2003.12.01

Abstract

To increase the retrieval performance in spatial database systems, it is required to develop spatial indexing methods considered the spatial locality. The spatial locality is related to the location property of objects. The previous spatial indexing methods are not considered the circular location property that objects will be taken. In this paper, we propose a dynamic spatial index structure called $Cr^*$-tree, and evaluate the performance of the proposed index structure. This is a new spatial index structure considered the circular location property of objects in which a search space is constructed with the circular and linear domains. By the simulation results, the $Cr^*$-tree shows that the number of disk across is low and the bucket utilization is high regardless of object distribution and bucket capacity.

공간 데이터베이스 시스템에서 검색의 성능을 높이기 위해서는 공간국부성을 고려한 공간색인 방법이 요구되며, 공간국부성은 객체들의 위치 속성과 관계가 있다. 기존의 공간색인 방법들에서는 객체가 가질 수 있는 순환적인 위치 속성이 고려되지 않았다. 본 논문에서는 순환 및 선형 도메인들로 구성된 검색공간에서 객체의 순환적인 위치 속성을 고려한 공간색인 구조인 $Cr^*$-트리를 제안하고 그 성능을 평가하였다. 실험결과에 의하면 $Cr^*$-트리는 객체의 분포형태와 버켓 용량에 관계없이 낮은 디스크 접근 횟수와 높은 버켓 이용률을 보였다.

Keywords

References

  1. W. G. Aref and H. Samet, 'Optimization Strategies for Spatial Query Processing,' Proc. of the 7th Int. Conf. on VLDB, pp.81-90, 1991
  2. N. Beckmann, H. Kriegel, R. Schneider and B. Seeger, 'The $R^{\ast}$-tree : an Efficient and Robust Access Method for Points and Rectangles,' Proc.ACM SIGMOD Int. Conf. on Management of Data, pp. 322-331, 1990
  3. S. Berchtold, C. Bohm, H. Kriegel, 'Improving the Query Performance of High-Dimensional Index Structures Using Bulk-Load Operations,'6th. Int. Conf. on Extending Database Technology, 1998
  4. S. Berchtold, D. Keim, H. Kriegel, 'The X-tree : An Index Structure for High-Dimensional Data,' 22nd Conf. on Very Large Database, pp.28-39, 1996
  5. T. Brinkhoff and H. P. Kriegel, 'The Impact of Global Clustering on Spatial Database Systems,' Proc. of the 20th VLDB Conf., pp.168-179, 1994
  6. R. H. Guting, 'An Introduction to spatial Database Systems,' VLDB Journal, No.3, pp.357-399, Aug., 1994
  7. A. Henrich and H. W. Six, 'How to Split Buckets in Spatial Data Structures,' Geographic DB Management Systems, Capri (Italy), pp.212-244, May, 1991
  8. H. V. Jagadish, 'Linear Clustering of Object with Multiple Attributes,' Proc. ACM SIGMOD Int. Conf. on Management of Data, pp.332-342, 1990 https://doi.org/10.1145/93597.98742
  9. L. K. Joune and L. Robert, 'The Spatial Locality and a Spatial Indexing Method by Dynamic Clustering in Hypermap System,' Proc. of the 2nd Sym. on Large Spatial Databases, pp.207-223, 1991 https://doi.org/10.1007/3-540-54414-3_39
  10. N. Katayama, S.Satoh, 'The SR-tree : An Index Structure for High-Dimen sional Nearest Neighbor queries,' Proc. ACM SIGMOD Int. Conf. on Management of Data, pp.369-380, 1997 https://doi.org/10.1145/253262.253347
  11. B. U. Pagel, H. W. Six, H. Toben and P. Widmayer, 'Towards an Analysis of Range Performance is Spatial Data Stuctures,' Proc. of the 12th ACM SIGCT-SIGMOD-SIGART Sym. on Principles of Database Systems, pp.214-221, 1993
  12. Y. Theodoridis, 'A Model for Prediction of R-tree Performance,' Proc. of the 15th ACM SIGCT-SIGMOD-SIGART Sym. on Principles of Database Systems, pp.161-171, 1996
  13. 김흥기, 황부현, '순환도메인을 기반으로 하는 PR-화일의 구현 및 성능 평가,' 제3권, 제1호, pp.63-76, 1996