60 2003. 12. Rt A] A21A A12%

L]

Fighting Fast Worm Epidemics: Prevention, Detection, and
Neutralization

1. Introduction

Today's worm epidemics entered a regime
where their spread is so overwhelmingly fast that
traditional human-intervened response is no longer
adequate. For instance, the SQL Slammer (ak.a.
Sapphire) epidemic infected most of the vulnerable
nodes in just 10 minutes [1], while substantial
response came in 2 to 3 hours world-wide [2].
Thus the response only stopped side-effects, not
the worm itself. From the epidemiological model
[3], we can readily prove that the infection speed is
a function of, most importaitly, the scanning rate
and the vulnerable population size. Namely, the
logistic equation below dictates the dynamics of the
epidemic:

x(t) = ————5—————

14| —-1¢™
X, o]

where x(t) is the number of infected nodes at
time t, K is the total number of vulnerable nodes,
and x(t=0)=x0 is the number of worms at the
outset. r=K/T*v is the infection rate, where v is
the scanning rate, and T is ~he scanned space size.
Since worms typically scan the entire IP address
space, T=232. Figure 1 shows the time to 90%
infection as a function of K, given v=10,000/s (cf.
in SQL Slammer, the average was 4,000/s and the
recorded maximum was 26,000/s [1]), and x0=1
(i.e., worst condition for the worm).

In essence, for a fast-scanning worm exploiting

=
=
=
_L?l.'.
£l
o
Fol
rk

100000

10000

1000

100

time to 90% infection

100 1000 10000 100000 1e+06
number of vulnerable nodes

Fig 1 Speed of epidemic for v=10,000

any vulnerable software with a substantial in-
stalled base (e.g. >100,000), the peak epidemic is
attainable in just a few tens of seconds. Currently,
against such fast worms we have absolutely no
impeding element installed in the Internet infra-
structure. Although there is a proposal for a
signature-based content filtering inside network
[4], its practicability is dubious due to the
complexity and its inherent limitation against
encryption and polymorphism that is increasingly
employed by modern wormsand viruses (e.g.
Loveletter [5]; There are even worm generator
softwareson the Web that automatize polymorphic
worm generation [6]).

In this paper, we explore three methodologies
that respectively addresses the prevention, detec—
tion, and countering of fast worm epidemics.
Section I analyzes the effectiveness of destination
IP address filtering against fast worm epidemics.
Section III presents a novel approach to detect the

Fighting Fast Worm Epidemics: Prevention, Detection, and Neutralization 61

behavioral characteristics of worm epidemic, victim
scanning. Section IV explores the idea of worm-
killing worm and investigates its practicability
against fast worm epidemics. Seciton V concludes
the paper.

2. Destination address filtering

Almost without exception, worms randomly
scan for victims [1,7] (although so called “hit-list”
worm [3] accumulates the list of vulnerable nodes
before the outhreak, in no major epidemic so far
the captured worm body contained one). For
nstance, Code Red Il generates an address within
the same /8 prefix with probability of 1/2, /16
prefix with 3/8, others with 1/8 {7]. SQL Slammer
does not have such preference, and it generates a
random address with equal probability. The
randomly generated IP address of a possible victim
in this way can be illegal in one of two ways
Martian [8] or cwrently unallocated (ak.a. “tarpit”)
[9). Collectively, these illegal destination addresses
occupy 44% of the entire IP address space [10].
(Although these blocks are subject to future
allocation, the procedure is slow enough [11] to
reflect on the address checker.) Therefore, more
than 2 out of 5 infection attempts through random
scanning result in the violation of the address
usage, and we can leverage this property to detect
and filter them on the packet level. Furthermore, a
host can be made to “quarantine” itself if it trans-
mits a Martian or unallocated destination address
more than a preset number of times, say , in a
given observation interval. In the quarantine, the
host launches a self-audit, eventually killing the
worm within. We can set fairly low (e.g. 5) since
in reality, there are few innocent hosts that
habitually transmit to illegal addresses [10]. We
will assume that the destination address filtering
includes the quarantine as well as the packet-level
filtering.

Suppose d is the fraction of vulnerable nodes
that employ the destination based filtering. The

address filtering effectively reduces the vulnerable
population base by a factor of (1-d). Thus the
infection rate in Eq. (1) changes to:

r,z (l—d)r Q)

The approximation is because we allow scans
before we quarantine the perpetrator. Note that K
is the number of networked servers on the Internet
(whose open service a malicious code can exploit).
Today, only Web servers and possibly some P2P
“servers” could be on the order of millions. Even
then, K/T should be much less than 0.001. With
such small K/T, the probability of an infection in

. 1—[1-519 Ko
scans is: T
(2). On the other hand, the probability of a
perpetrating node not caught in random scans is

“r 7, so we ignore it in Eq.

approximately [10]: P (N.8) = 20[i)Z_N which is
a fast decreasing function of N [10]. N=vL is the
number of scan packets in a given observation
interval L. Since v is so high in fast epidemics,
enough to cause demial-of-service [1], the “im-
punity” probability above is negligible. Now we
show how much time this mechanism buys us at
the outset in which to react to an epidemic. Figure
2 plots the time to 10% infection as a function of
d for four different values of K, ranging from 1,000
to 1,000,000. We notice that the address filtering
effect becomes visible only at high level of d. So it
will not help much to slow down a fast epidemic

required deployment ratio "“ B

l,
08
06
04 . .
o,2: e 100000

) rabl
Qlo ‘ . wx&ne e nodes

1e+06
100 -
time to 10% infectiml\l}(s’? 1 0006000

Fig 2 Timescale of initial outbreak as a
function of d

62 2003. 12. FEHEHA A2ld AH12%

with partial deployment. However, as d approaches
1, it can arbitrarily impedethe epidemic even for
large K In particular, for d=1, x{(t) in Eq (1)
(subject to the modification of Eq. (2)) remains at
1, independent of t.

So the whole issue is reduced down to whether
sweeping deployment is feasible or not. We argue
that it is feasible. Whenthe operating system
platforms in the past large epidemics are limited to
a small number and only one is exploited at a time,
its deployment at hosts can be as sweeping and
swift as in everyday operating system patch. For
instance, Microsoft Windows operating systems
regularly perform such automaticupdate, and some
Linux publishers also provids automatic patches on
demand [12]. And the update can also deal with the
changes of illegal address blocks due to future
allocation [11]. Finally, as for source address
filtering {13] and the filtering at IPv4 routers [8], a
standard or a “Best Current Practice (BCP)” could
also be established for the destination address
filtering at hosts.

3. Fast Classification, Calibration, and
Visualization of Network Attacks

Detecting attacks on backbone-speed links, let
alone performing attack classification and other

destination port

70000
60000
50000
40000
30000
20000

10000 -

Se+08, - .
1e408, o S0 L
1.59«)92&,,0gz w//

source P

more involved tasks, is hard. The formidable speed
forbids any algorithm requiring more than a few
memory lookups and computation steps per packet,
to operate in-line. The sheer volume of the traffic
would dwarf even the fiercest attacks, rendering it
hard to separate them out. Therefore, any algo-
rithm for backbone-speed links must simul-
taneously achieve speed and sensitivity, which,
unfortunately, are usually in a trade-off relation.
But if only feasible, attack monitoring on a
backbone link can lead to unique advantages, first
for detection and then for possible preemption. For
instance, a global-scale hostscan activity is far
more defined and visible in the backbone before it
spreads out towards targets. Likewise, distributed
denial-of-service (DoS) flows first converge in the
backbone, rendering themselves more conspicuous,
before they proceedand bombard the victim.

On each packet arrival, we want to judge
whether it is (highly likely) part of an attack or
not. And if indeed it constitutes an attack, we want
to classify the type of attack: DoS, hostscan, or
portscan. Furthermore, we want to identify who is
the victim (DoS), who is the perpetrator and what
ports are scanned (hostscan, portscan), and the
intensity of the attack. In this section, we discuss
our approach to achieve these goals.

flows

7 4e+09
-7 3.5e+09
T 3e+09
7 2.56+09
T 2e+09
~1.5e+09 destination IP
T 1e+09

Figure 3 Flows at around 9:35 a.m., Dec. 14th, 2001.

Fighting Fast Worm Epidemics: Prevention, Detection, and Neutralization 63

First, we define a flow to be a 3-tuple <s, d, p>,
composed of the source address (s), destination
address (d), and destination port (p). Our novel
idea starts from the observation that only DoS
attack, hostscan and portscan appear as a regular
geometric entity in the hyperspace defined by the
3-tuple. For instance, source-spoofed DoS packets
maintain a fixed destination address, thus appears
as a straight line (in case destination port is fixed)
parallel to the s axis, or as a rectangle (in case
destination port is randomly varied) parallel to the
s—p planelegitimate flows, on the other hand,
appear as random points scattered across the
hyperspace.

Figure 3 shows the flows observed at 9:35 and
936 am in December 14th, 2001 on two trans—
pacific T-3 links connecting the U.S. and a Korean
Internet Exchange. The three axes are the source
IP address, destination IP address, and destination
port as used in the flow definition above. (The
source and the destination addresses have decimal
scale.) Each dot in the 3-dimensional hyperspace
represents a single flow (not a packet). Total of
2.22 million packets were mapped to the hy-
perspace in the figure, where the packets in the
same flow fall on the same position. We can easily
recognize the regular geometric formations, such
as a large rectangle and a leaner rectangle lying
paralle]l to s-axis, lines parallel to d-axis, and
numerous vertical lines. These regular formations
are (destination port varied) DoS attacks, host-
scans, and portscans, respectively. Although far
outnumbering them, legitimate flows do not form
any regular shape, and are less conspicuous.

By focusing on only the regular formations, we
can weed out the majority legitimate traffic,
drastically reducing the amount of data we need to
process. This not only helps the detection algo-
rithm keep up with the traffic speed, but also
boosts the accuracy. This is roughly how we break
the aforementioned trade-off between speed and
sensitivity. As one might notice, the identification
of regular patterns in the hyperspace lies in the

center of the approach. Instead of employing
complex pattern recognition techniques such as
3-dimensional edge detection, we apply an original
algorithm that captures the “pivoted movement” in
one or more ofthe 3 coordinates. This is because,
from graphical perspective, such movement forms
the aforementioned regular pattern along the axis
of the pivoted dimension. In hostscan, the source IP
address and the destination port are fixed, while
the destination IP address pivots on them [1]. In
portscan, the destination port pivots on the source
and the destination IP address. In source-spoofed
DoS, the destination IP address is fixed, while
either only the source IP address or both the
source IP address and the destination port pivots
on it [14].

In order to detect the presence of pivoting in the
traffic stream, our scheme first generates a sig-
nature for each incoming packet. The signature is
simply a tuple consisting of 3 binary values: <Ks,
Kd, Kp>. The coordinates in the signature one-
to—one correspond to the flow coordinates. Each
coordinate value in the signature tells us whether
the corresponding value in the flow (that the
packet in hand belongs to) was seen “recently” or
not. (The degree of recentness for different co-
ordinates could vary, and we will deal with it
later.) For example, suppose two flows

Arrival_time Elow Flow ID
t:. | <3456, 56.7.8 90> 1
t+1 . | <1234, 56.7.8, 80> 2

pass through the monitorthat executes our
scheme. For convenience, throughout the paper we
will call the monitor RADAR monitor (for Real-
time Attack Detection And Report), and the algo-
rithm that it executes, RADAR algorithm. Unless
we explicitly mention the algorithm, we refer to the
monitor (that includes the algorithm) when we
simply say RADAR. RADAR remembers these two
flows for a finite time duration L. For the sake of

64 2003. 12. FRIASEHA] A21d A128

explanation, let us assume for now that the time
duration is the same for every coordinate, eg., L =
2. When a packet with source IP = 1234,
destination IP = 3456, destination port = 90
appears at time t+2, RADAF tells that this packet’s
signature is <Ks, Kd, Kp>=<1, 0, 1>. This is
because source IP address 1.2.3.4 appeared in flow
{2) and port 90, in flow (1). But 3.456 was not
used either in (1) or (2) as the destination address,
so Kd='0.If L =1, flow (1) would have been
purged from RADAR at the time of the packet
arrival, and the signature would be <1, 0, 0>.

In principle, this per-packet signature deter-
mines whether the packet is part of a “pivoted
movement’, and if so, what type it is. Note that
when pivoting occurs, the value of the pivoted
coordinate changes constantly from packet to
packet within the attack siream. From the per-
spective of RADAR algorithm, the pivotedco-
ordinate is viewed as rersistently presenting
recently unobserved values. So RADAR will keep
generating <1, 0, 1> signatatures for hostscan.
This way, RADAR gets to yield the signatures <1,
0, 1>, <1, 1, 0>, or <0, 1, *> rather frequently in
the presence of Thostscan, portscan, or
source-spoofed DoS, respectively. (‘*' is wildcard,
ie, ‘0 or ‘1'). These signatures are what we call
attack signatures, and the corresponding flow goes
through further examination. Sometimes legitimate
traffic can get attack signatires, and vice versa. Or
one attack might be mistaken as ancther, all due to
hapless modification of one or more coordinates in
the signature, so some refinement is required in
back-end processing (which is much less time-
pressed). The accuracy of the proposed algorithm
thus depends on how likely these unwanted
changes in the signature are, so this statistical
aspect of our algorithm is analyzed in [15}. Note
that each new value in the pivotedcoordinate
means a new flow in our flow definition. Once the
number of newly seen flecws exceeds a preset
threshold per source (perpetrator) or destination
(victim) depending on the type of attack analyzed

in the back-end, alarm goes off so that any
necessary action can be taken.

Table I exhaustively enumerates all signatures
and their conceivable implied attack types. As we
described earlier, ‘0’ in a signature means that the
monitor has not recently seen the value in the
given coordinate. Thus, if a packet belongs to an
attack stream, ‘0’ value in a coordinate most
probably means that the coordinate is pivoting. The
leftmost column is the number of dimensions that
are pivoting. The second column is how the attacks
might manifest themselves geometrically when the
attack is mapped on to the 3-d hyperspace a la
Figure 3. An important note here is that the
signatures listed in Table 1 are self-induced.
Namely, the values in a signature are what are
caused by the corresponding attack itself, but not
by others. To wit, these are what an attack would
obtain in the absence of any cross (legitimate +
other type of attack) traffic. But as we discussed
earlier, cross traffic might overlap in one or more
coordinates, and these signatures are not always
those detected when correponding attack is under
way. For <0, 0, 0>, one or more coordinates can be
flipped to 1 by cross traffic that happens to
coincide on IP addresses or port number. Suppose
a flow <4444, 2222 5555> is initiated after a
flow <1.1.1.1, 2222 3333> is registered by
RADAR. Then the former will receive <0, 1, 0>
signature, which RADAR recognizes as the
port-varied DoS attack.

With careful application of these signatures, we
can find the attacks in the traffic with low false
positive probability and high sensitivity [15].
Figure 4 shows an example of this graphical re-
presentation of the attacks, as extracted by
RADAR algorithm from the trace data of Figure 3.

The memory requirement of the hash tables in
the main filter and the post filter is moderate.
Assuming we use a 24-bit hash for the source and
destination IP tables, we need at least 225 hash
buckets whose heads are a pointer (usually 4
octets). This alone is 128MB. Over and above, we

Fighting Fast Worm Epidemics: Prevention, Detection, and Neutralization 65

need to store each flow in these tables, where a
flow has at least 2 IP addresses, 1 port number,
and a timestamp. Also each entry needs a pointer
to the next entry. So each flow entry requires at
least 17B. Assuming there are 1 million flows be-
ing tracked simultaneously, 34MB should be used.
If memory is a critical resource, we could use
23-bit hash, halving the requirement, and then

22-bit hash and so forth.

4. On the functional validity of the

TABLE 1 Attack signatures

worm-killing worm

At the extreme of the spectrum of automatic
responses is the elusive killer~worm. The notion of
worm-kiling worm has been in the folklore for
some time [16,17,18]. Although there is no formal
definition of killer worm, its most characteristic
(and controversial) aspect is that it spawns exactly
as worms do. In fact, it isa worm, except that it
cures the infected and preventively patches vul-

Dim. mg?ggg?é n Signature Implied attack
0 Dot <, 1, 1> Single-source-spoofed DoS
<1, 1, 0> Portscan
1 Straight line <1, 0, 1> Hostscan
011> Source-spoofed DoS (destination
port fixed)
<1, 0, 0> Kamikaze
9 Rectangle 0, 1, 0> Source-spoofed Do.S (destination
port varied)
<0, 0, 1> Distributed hostscan
3 Hexahedron <0, 0, 0> Network-directed DoS

70000

60000

50000

40000

30000

20000

10000

vdos
fdos
hscan

1]

Figure 4 A RADAR-processed result of Figure 1

66 2003. 12. AR3EI A A21d A12%

nerable nodes. The gist of the idea is that through
and only through worm-like spawning, it can par
with fast worms Henceforth we will refer to the
worm-killing worm as “the killer worm” or “the
killer,”as opposed to its malicious counterpart,
which we refer to as simply “the worm.” in speed.
However, the very idea of unleashing a self-
propagating code possibly over administrative
boundaries, however “good-willed” [16] it might
be, can be threatening. What if the killer worm
itself is compromised? How complicated is it to set
up the trust association among normally mutually
distrustful administrative domains?

Despite these concerns, there was a report [17]
that two separate killer-worm mobile codes, dub-
bed Code Green [18] and CRclean, were actually
released to the Internet to fight the Code Red
(obviously without consent from the “victims™).
And recently, Toyoizumi and Kara [16] attempted
a theoretical modeling of the killer worm based on
the Lotka—Volterra equations in order to optimize
its behavior. In this paper, to0, the ethics and other
non-technical ramifications are put aside. This is
because we believe that judging its functional
validity should come first before starting any such
discussions, especially in tie light of recent fast
worm epidemics such as that of SQL Slammer. So
in this paper we attempt to quantify the following
aspects of the killer worm:

m effectiveness (i.e., if a killer worm can indeed
preempt a worm epidemic, and if so, how fast)
® efficiency (i.e., at what costs)

In our system model, there are a finite number
of susceptible nodes. In reality, these are computers
with an exploitable vulnerahility. For instance, they
could be Web servers running Microsoft MS
software (as in Code Red II) or SQL server soft-
ware (as in SQL Slammer). Usually, the number of
susceptible nodes is much smaller than the size of
the entire population, which is the number of hosts
attached to the Internet in reality. When a
susceptible node is compromised by the worm

released by the attacker, it becomes infected. On
the other hand, when a previously infected node is
cured, we say it is removed of the worm. This
model closely resembles that used in epidemiology,
and we can use a differential eguationto math-
ematically describe the dynamics. In Staniford et al.
[3}, a logistic equation is used to model the number
of infected nodes after a given time since the
outbreak began. When the killer worm is injected
into the system, the dynamics becomes more
complex. In [16], the Lotka-Volterra equations are
employed to model the prey-predator dynamics
between the worm and the killer worm. Unlike in
[3], however, the environmental capacity, ie., the
number of susceptible population that the worm
can prey upon, is not included in the model.
When the system starts, a single worm begins
to spawn. It scans the entire population (since it
does not know a prioriwhich node is vulnerable) to
find a susceptible node An exception is the
“hit~list"worm, which accumulates the list of
susceptibles through scanning before it starts
spreading [3]. So far, in no major worm epidemic
the worm body contained a hit list (For instance,
see [1]). When the worm finds one, it infects it,
which involves self-replicating and planting a
replica there. The replica at the infected node also
starts spreading. The dynamics of the epidemic is
affected by many parameters: the total population
(T), the number of initial susceptible population
(S), the scanning rate (v), and the time for the
infected node to become active (d). In particular, if
d=0, the infection rate of a worm under random
scanning is
S
T 3)

When the killer worm is used, we must also
consider the reaction time (a) and the killer's
scanning rate (k). The reaction time is what takes
to detect the onset of the epidemic and take a
counter—action (e.g., unleashing the killer worm). It
is well known that reducing the reaction time is

Fighting Fast Worm Epidemics: Prevention, Detection, and Neutralization 67

TABLE 2 Default parameter values

Parameter Meaning Default value
T Total population 232
S Susceptible population 100,000
v, k Scanning rate 10,000/s
d Worm activation delay 0Os
a Reaction time 10s
w Number of starters 1

critical [4] to contain the epidemic to the minimum.
In this paper, we assume that once the killer is
unleashed, it replicates itself on both susceptible
and infected nodes. Other mode of operation may
be replicating only on the previously infected
nodes.

The shortcoming of the prey-predator model of
[16] is that it does not explicitly take account of
these parameters, above and beyond the envi-
ronmental capacity. Therefore, in this paper we
mostly resort to the simulation experiments to
investigate their affects.

We will use the following values for the system
parameters:

As for T, note that it does not have to represent
the real population in the system. Real-life worms
usually probe the entire IP address space in a blind
manner [1,7], not knowing which address is in real
use and vulnerable. Therefore, it is natural to
model the worm as well as the killer worm to
“think” that total population is 232 (entire IP space
size). The number of susceptible nodes S is set
roughly to the order of SQL Slammer infection
which was at least 75,000 [1]. Also for v and k, the
SQL Slammer epidemic is used as a reference. In
SQL Slammer, the average scanning rate from the
infected node was 4,000/s where the observed
maximum was 26,000/s [2]. Since our focus in this
paper is on the effectiveness of the killer worm in
fast epidemics, we set the average scanning rates
higher. We do not set k > v since in a fast

epidemic, the worm scanning rate is likely to be at
the maximum that the infected node’s processing
and bandwidth capacity can offer [1]. So the killer
worm can at best par with it, but not exceed. As
for d and a, we set the default to 0 and 10 seconds,
respectively. But we will see the impact of
changing these values below. By default we
assume that both the worm and the killer startfrom
a single entity as mentioned in the previous
section. So the number of progenitors W is 1
unless otherwise mentioned. In reality, however,
this may not be true. Both the attacker and the
killer worm defense system may each want to start
from as many locations to boost the initial
spawning speed. We will discuss this aspect later
on,

In the first experiments, we investigate the
impact of the parameters to the dynamics of the
epidemic, starting from the reaction time, a. Just as
in any infectious disease control, containing the
outbreak in its early stage is considered crucial [4].
For instance, in retrospect, it is argued that we had
30~ to 60-second window atthe beginning of the
SQL Slammer epidemic for effective containment
[2]. In this paper we are looking at faster
epidemics, so we vary a well within that range:
from 5 to 30 seconds. Figure 5 shows the result.
The x-axis represents a, while the y-axis is the
number of infected nodes at the peak of the
epidemic, Imax. We find that Imax is roughly a
linear function of a. In terms of the prevention

68 2003. 12. AEets]lA] #2198 A12%

effect, the number of nodes patched by the killer
before infection nearly disappears with a > 30.
Namely, almost all vulnerable nodes in the system
are infected before the killer visitsin that time, It
corroborates the analysis on the size of the time
window for effective response in a fast epidemic
[2). This result has a grave implication in future
fast epidemics, detection must be done extremely
fast, in much less than a minute. Otherwise, most
vulnerable nodes will have already sustained a
possibly damaging hit frora the worm by the time
a killer worm comes to the aid.

But how easy is it to detect the onset of the
outbreak within, say 10 seconds, without too many
false positives, considering there are only a small
number of infected nodes in that time ? Designing
a detector with such precision and speed will he
extremely difficult, if not impossible. Unless set
loose within a few tens of seconds into the
epidemic, even the powerful killer worm cannot
prevent massive infection. Therefore, unleashing
the killer worm after deecting the outbreak is
likely to have limited utility against a fast worm.
But we reserve the judgment on its effectiveness
on slow epidemics.

In terms of the bandwidth usage, a killer worm
that keeps trying to spawr. even after the epidemic
dies out will be no less problematic than the worm
epidemic itself. Recollect that SQL Slammer worm
100000
90000
80000 -
70000
60000+
50000
40000

number of nodes

could paralyze a substantial part of the Internet
with just scanning traffic (it carried no other
damaging payload). In [16], this very issue is
addressed and a solution is proposed controlling
“predatory rate” and “predator multiplication rate”.
The former is the rate at which a killer worm
hunts (thus kills) a malicious worm, and the latter
is the rate at which a killer replicates itself upon a
kill. For instance, in our system the multiplication
rate is 1, i.e,, a killer worm that found an infected
node gives birth to a single replica. Unfortunately,
in reality we cannot determine the predatory rate a
priori it can only be obtained through a post
mortemn analysis, eg., 85 per second in SQL
Slammer [7]. This is because the predatory rate is
a function of many system parameters we do not
know before the outbreak. For one, we do not
know S, namely how many have not patched for
the particular vulnerability, before the epidemic
actually occurs.

Therefore, we need a more practical mechanism
to optimize the traffic usage of the killer worm. In
this paper, we fuse the “rumor-mongering” model
[19] into the construction of the killer worm: a
rumor-monger loses incentive to spread the word
when he finds that too many people already heard
about it. This way, by the time most people have
heard the rumor, the rumor naturally stops
spreading. Likewise, if the modified killer finds that

max. Infected

Infectioh prevented

20 25 30

reactlon time (s}

Figure 5 The impact of the reaction time

Fighting Fast Worm Epidemics: Prevention, Detection, and Neutralization 69

the visited node has been removed of the worm
already, it considers the visit a failure. When the
fraction of the failures increases beyond a
threshold r, the killer (to be precise, an instance)
self-destroys. Figure 4 shows the impact of this
modification on the system behavior. The y-axis
represents the number of killers’ scanning packets
generated system-wide. We vary r from 0 to 0.9,
and the impact is significant. Even at r = 0.1, the
number of scanning packets decreases by half.
However, higher thresholds cause less dramatic
decrease. But it is one required self-control mech-
anism that a killer worm must be equipped with.

Would the infection be more virulent with more
stringent killer control (i.e., larger r)? Surprisingly,
the number of infected nodes for different values of
r is almost identical in our current setting [20].
Although not shown due to space constraint, our
investigation [20] shows that the time the curves in
Figure 6 begin to diverge interestingly concurs
with the time at the peak infection. Although
Figure 6 seems to suggest that lowering r is only

beneficial, the optimal value of r must be a
function of many other system parameters. Again,
we need a general analytical framework to
dynamically determine the optimal value of r. It is
a subject of our ongoing work.

In order to minimize the epidemic, the killer
worm must hit as many infected nodes as possible
at the outset, when the number of the infected node
is still small. One way to achieve this objective is
to improve the accuracy of the “guesses’on the
part of the killer. To assist the killer, we can let
each host maintain a list of recent correspondents.
For instance, a 30-second worth of IP addresses
from which a host received packets (possibly
containing worm payload) could be recorded. When
the killer worm finds an infected node, it can start
from the IP addresses in the node’s list since the
worm that planted a replica at the infected node
could have come from one of those addresses.
Figure 7 shows the result of this enhancement. We
notice that the infection is indeed significantly
reduced, while the reduction quickly becomes

1e T T T

number of scans by killer

T)wa” P
47

LK
i

time(s)

Figure 6 Volume of scanning traffic with different r

70 2003. 12. FRA3A] AM2Aad A2

marginal with progressively large time window.
One might think that the notion of “time bomb”
is applicable on the attacker’s part namely, if the
attacker intentionally puts a delay until the acti-
vation of the worm, e.g., 60 seconds, then the
worm would evade the back:racking. However, this
delayed activation technique would only procras-
tinate the spread of the worm in its initial phase
[20]. In the figure, the delayed epidemic still shows
the exponential behavior (the y-axis is in log
scale), but it is too slow to cause a fast epidemic.
This is because the attacker, by inserting the
artificial delay, is widening the time gap between
the “generations” [3] of infection. So we can argue
that fast epidemics will shun such delay. If
deployed widely, therefore, exploiting the history of
communication in killer worm propagation will be
a powerful technique to boost the killer's perfor-
mance.One last caveat is that this technique is
effective against the worms that are carried over
TCP, and those that use UDP but do not employ

source address spoofing. This is because a bogus
address in the list does not help in the back-
tracking. Note that the scanner normally cannot
spoof when using TCP.

5. Conclusion

In this paper, we explore methodologies to pre-
vent, detect and fight fast worm epidemics. Desti—
nation IP address filtering exploits the fact that
most current worms generate illegal destination
addresses with a high probability. We find that its
effectiveness is guaranteed only under wide
deployment. We argue that it is not as impractical
as one might think, if we can utilize the OS patch
channels. The update will be simple, swift, and
sweeping, and it will fundamentally block so called
fast epidemics. However, all bets are off if worms
follow suit, namely, if worms censor the randomly
generated destination address. Second, we consider

how we can capture the characteristic worm

40000 T

30000 =10
L=
L= -

none

number of infected
T

10000 (-

™ i T

g8
0 sessooenESE .
20 25 30 35

time(s)

Fgure 7 The impact of address recording for backtracking

Fighting Fast Worm Epidemics: Prevention, Detection, and Neutralization 71

scanning behavior on packet level at high-speed. A
novel algorithm called RADAR (real-time attack
detection and reporting) is shown to have low false
positive probability and to operate with minimal
memory access overhead. Although precise and
sensitive, it requires further refinement to dis-
tinguish the early sign of worm epidemic and
casual hostscan. Third, we explore the practica-
bility of the elusive notion of worm-killing~ worm.
Although powerful, it is shown to be useful only
when it is Jaunched early in the epidemic, which is
infeasible due to the difficulty of early detection
and patch generation. Considering other unde-
sirable aspects such as excessive traffic caused by
the killer worm itself, it is considered not a viable
option against fast worm epidemics. In summary,
there is no solution or solutions that solves the
problem of fast worm epidemics. Further research
for more effective countermeasures is badly need—
ed.

Acknowledgements: This work was supported
by Korea University Grant.

References

[1] CAIDA, “Analysis of the Sapphire Worm,”
http://www.caida.org/analysis/security/sapphi
re/, Jan. 2003,

[2] D. Moore, V. Paxson, S. Savage, C. Shannon,
S. Staniford, and N. Weaver, “The spread of
the Sapphire/Slammer worm,” a NANOG
presentation, http://www .nanog.org/mtg-
0302/ppt/worm.pdf, March, 2002.

[3] Stuart Staniford, Vern Paxson, and Nicholas
Weaver, “How to Own the Internet in Your
Spare Time,” 11th USENIX Security Sym-
posium, June, 2002.

[4] D. Moore, C. Shannon, G. Voelker, and S.
Savage, “Internet Quarantine: Requirements
for Containing Self-Propagating Code”, IEEE
Infocom, March, 2003.

[5] S. Taylor, “The Complexities of Viral VB

Scripts,” European Institute for Computer
Antivirus Research (EICAR) International
Conference, 2001.

[61 VBS Worm Generator, http://vx.netlux.org/
vx.php?id=tv()7.

{71 CAIDA, “CAIDA analysis of Code Red,”
http://www.caida.org/analysis/security/code-r
ed/.

[8] F. Baker, Requirements for IPv4 routers, RFC
1812.

[9] IANA, Internet Protocol Version 4 Address
Space, http.//www.iana.org/assignments/ipvd-
address-space.

{10] H. Kim and I. Kang, “On the Effectiveness of
Martian Address Filtering and its Exten-
sions,” IEEE Globecom, Dec. 2003.

[11] A. Broido, E. Nemeth and K. C. Claffy,
“Internet Expansion, Refinement, and Churn,”
a NANOG presentation, Feb. 2002.

[12] Red Hat Linux, http:// http://sources.redhat.
cony.

{13] P. Ferguson and D. Senie, “Network Ingress
Filtering: Defeating Denial of Service Attacks
which employ IP Source Address Spoofing,”
RFC 2827.

[14] K. Houle and J. Weaver, “Trends in Denial of
Service Attack Technology,” CERT Coordi-
nation Center, Oct. 2001.

[15] H. Kim, “Fast Classification, Calibration, and
Visualization of DoS and Scan Attacks for
Backbone Links,” Technical Report, June
2003, http://net.korea.ac.kr/papers/RADAR html.

{16] H. Toyoizumi and A. Kara, “Predators: good
will mobile codes combat against computer
viruses,” New Security Paradigms Workshop
2002, Sept. 23-26, Virginia Beach, USA.

[17] Newsbyte, http://www.newsbytes.com/news/
01/169707 html

[18] “D. HexXer,” Code Green, http://www.se-
curityfocus.com/archive/82/211428.

[19] A. Demers et al., “Epidemic algorithms for re-
plicated data management,” Sixth Symp. on
Principles of Distributed Computing (Van-

72 2003. 12. B3| x| Az14

125

couver), ACM, August, 1987, pp. 1-12.

f20] H. Kim, “Demystifying the killer worm,”
Techreport, Korea University, Aug. 2003.
http://net korea.ac kr/killer.html,

rk

2z

1987, 2 Aguishn e wxpALt
713K EAD

1999, ¢ Mgzt oisg] e
THAAD

1996, 12 uj= #iadupo} tiakw A%
B 2 AEasKERY

196, 2~190, 9 I3 4 $4 d7a
QB T2 G d7d

1999, 6~2003, 1 oprohgtn HEZA

HE 3u 9 ARHIRY =

e

06 3~8A TSt FREAY
el Hag
BaEo} © QB WEY B ofF

A

E-mail : hyogon@korea.ackr

The International Conference on Infor-

.3
A

mation Networking (ICOIN) 2004
.

. %

A 20043 29 18~20¢
2 : Marriott Hotel(¥-4})
H . ARFAATS]
Aleh] : http://www.icoin2004.or kr

