DOI QR코드

DOI QR Code

Proportional-Integral-Derivative Evaluation for Enhancing Performance of Genetic Algorithms

유전자 알고리즘의 성능향상을 위한 비례-적분-미분 평가방법

  • Published : 2003.08.01

Abstract

This paper proposes a proportional-integral-derivative (PID) evaluation method for enhancing performance of genetic algorithms. In PID evaluation, the fitness of individuals is evaluated by not only the fitness derived from an evaluation function, but also the parents fitness of each individual and the minimum and maximum fitness from initial generation to previous generation. This evaluation decreases the probability that the genetic algorithms fall into a premature convergence phenomenon and results in enhancing the performance of genetic algorithms. We experimented our evaluation method with typical numerical function optimization problems. It was found from extensive experiments that out evaluation method can increase the performance of genetic algorithms greatly. This evaluation method can be easily applied to the other types of genetic algorithms for improving their performance.

본 논문에서는 유전자 알고리즘의 성능향상을 위한 비례-적분-미분 평가방법을 제안한다. 비례-적분-미분 평가방법에서는 평가함수에 의하여 계산된 적합도와 더불어 각 개체의 부모 적합도, 초기세대로부터 이전세대까지의 최소, 최대 적합도를 이용하여 평가함으로서 유전자 알고리즘의 성능저하를 가져오는 조숙수렴 (premature convergence) 확률을 줄여주어 결과적으로 유전자 알고리즘의 성능을 향상시키게 된다. 비례-적분-미분 평가방법의 성능을 보이기 위하여 유전자 알고리즘 성능 검증에 많이 사용되어온 대표적인 함수 최적화 문제들을 적용하여 실험해본 결과 제안한 방법이 유전자 알고리즘의 성능을 크게 향상 시킬 수 있음을 확인하였다. 제안한 평가방법은 다른 형태의 유전자 알고리즘의 성능향상을 위해서도 쉽게 적용될수 있다.

Keywords

References

  1. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley, 1989.
  2. K. Kristinsson and G. A. Dumont, "System Identification and Control Using Genetic Algorithms," IEEE Trans. on Systems, Man and Cybernetics, vol. 22, pp. 1033-1046, Sep/Oct 1992. https://doi.org/10.1109/21.179842
  3. C. L. Karr and E. J. Gentry, "Fuzzy Control of pH Using Genetic Algorithms, "IEEE Trans. on Fuzzy Systems, vol. 1, pp. 46-53, Jan. 1993. https://doi.org/10.1109/TFUZZ.1993.390283
  4. M. Srinivas and L. M. Patnaik, "Genetic Algorithms: A Survey," IEEE Computer Magazine, pp. 17-26, June 1994.
  5. H. Szczerbicka and M. Becker, "Genetic Algorithms: A Tool for Modelling, Simulation, and Optimization of Complex Systems," Cybernetics and Systems: An International Journal, vol. 29, pp. 639-659, Aug. 1998. https://doi.org/10.1080/019697298125461
  6. T. kuo and S. - Y. Hwang, "A genetic algorithm with disruptive selection," , IEEE Trans. on Systems, Man and Cybernetics, vol. 26, no. 2, pp. 299-307, 1996. https://doi.org/10.1109/3477.485880
  7. J. Andre, P. Siarry, and T. Dognon, "An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization," Advances in engineering software, vol. 32, no. 1, pp. 49-60, 2001. https://doi.org/10.1016/S0965-9978(00)00070-3
  8. A. J., M. Z., and M. J., "GAVaPS-a Genetic Algorithm with Varying Population Size," , Proceedings of the Evolutionary Computation Coriference, part of the IEEE World Congress on Computational Intelligence, June 1994. Orlando.
  9. J. E. Smith and T. C. Fogarty, "Operator and parameter adaptation in genetic algorithms," , Soft computing a fusion of foundations, methodologies and applications, vol. 92, no. 2, pp. 81-87, 1997.
  10. S. H. Jung, "A Genetic Algorithm with Ageing Chromosomes," Journal of Fuzzy Logic and Intelligent Systems, vol. 7, pp. 16-24, June 1997.
  11. R. Yang and I. Douglas, "Simple Genetic Algorithm with Local Tuning: Efficient Global Optimizing Technique," Journal of Optimization Theory and Applications, vol. 98, pp. 449-465, Aug. 1998. https://doi.org/10.1023/A:1022697719738
  12. S. H. Jung, "Eugenic Genetic Algorithm," journal of Fuzzy Logic and Intelligent Systems, vol. 9, pp. 81-88, Feb. 1999.
  13. L. Davis, "Adapting Operator Probabilities in Genetic Algorithms," in Proceedings of the 3rd International Conference on Genetic Algorithms and their Applications, pp. 61-69, 1989.
  14. M. Srinivas and L. M. Patnaik, "Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms," IEEE Trans. on Systems, Man and Cybernetics, vol. 24, pp. 656-667, Apr. 1994. https://doi.org/10.1109/21.286385
  15. A. Tuson and P. Ross, "Adapting Operator Settings In Genetic Algorithms," Evolutionary Computation, vol. 6, no. 2, pp.161-184, 1998. https://doi.org/10.1162/evco.1998.6.2.161
  16. C. W. Ho, K. H. Lee, and K. S. Leung, "A Genetic Algorithm Based on Mutation and Crossover with Adaptive Probabilities," in Proceedings of the 1999 Congress on Evolutionary Computation, vol. 1, pp. 768-775, 1999.
  17. S. H. Jung, "Self-tuning of Operator Probabilities in Genetic Algorithms," 전자공학회 논문지, vol. 37, pp. 29-44, Sept. 2000.
  18. I.- K. Jeong and J.-J. Lee, "Adaptive Simulated Annealing Genetic Algorithm for System Identification," , Engineering Applications of Artificial Intelligence, vol. 9, pp. 523-532, Oct. 1996. https://doi.org/10.1016/0952-1976(96)00049-8
  19. G. A. Vignaux and Z. Michalewicz, "A Genetic Algorithm for the Linear Transportation Problem," IEEE Trans. on Systems, Man and Cybernetics, vol. 21, pp. 445-452, MARCH/APRIL 1991. https://doi.org/10.1109/21.87092
  20. M. McInerney and A. P. Dhawan, "Use of Genetic Algorithms with Back Propagation in Training of Feed-Forward Neural Networks," International Conference on Neural Network, pp. 203-208, 1993.
  21. S. H. Jung, "Two Dimensional Evaluation Scheme in Genetic Algorithms," , Journal of Electrical Engineering and Information Science, vol. 4, pp. 561-570, Oct. 1999.