DOI QR코드

DOI QR Code

Influence of Thermal Treatment on Surface Morphology of Tin Dioxide Thin Films

열처리에 따른 SnO2 박막의 표면형상

  • Park, Kyung-Hee (Research Institute of Energy Resources Technology, Chosun University) ;
  • Ryu, Hyun-Wook (Research Institute of Energy Resources Technology, Chosun University) ;
  • Seo, Yong-Jin (Department of Electrical Engineering, Daebul University) ;
  • Lee, Woo-Sun (Department of Electrical Engineering, Chosun University) ;
  • Hong, Kwang-Jun (Department of Physics, Chosun University) ;
  • Park, Jin-Seong (Department of Material Engineering, Chosun University)
  • 박경희 (조선대 에너지자원신기술연구소) ;
  • 류현욱 (조선대 에너지자원신기술연구소) ;
  • 서용진 (대불대학교 전기공학과) ;
  • 이우선 (조선대학교 전기공학과) ;
  • 홍광준 (조선대학교 물리학과) ;
  • 박진성 (조선대학교 재료공학과)
  • Published : 2003.07.01

Abstract

Tin dioxide ($SnO _2$) thin films were deposited at $375^{\circ}C$ on alumina substrate by metal-organic chemical vapor deposition. A few hillocks like a cauliflower were observed and the number of hillock on thin film surface increased with annealing temperature in air atmosphere. The oxygen content and the binding energy during air annealing at$ 500^{\circ}C$ came to close the stoichiometric $SnO_2$. The cauliflower hillocks seem to be the result of the continuous migration of the tiny grains to release the stress of an expanded grain. Sensitivity of CO gas depended on annealing temperature and increased with increasing annealing temperature.

Keywords

References

  1. Z. M. Jarzebski and J. P. Marton, J. Electrochem. Soc., 123, 199 (1976) https://doi.org/10.1149/1.2133010
  2. A. Goetzberger and C.Hebling, Sol. Energy Mater. Sol. Cells, 62, 1 (2000) https://doi.org/10.1016/S0927-0248(99)00131-2
  3. S. S. Park and J. D. Mackenzie, Thin Solid Films, 274, 154 (1996) https://doi.org/10.1016/0040-6090(95)07075-3
  4. A. Salehi and M. Gholizade, Sensord and Actuators B, 89, 173 (2003) https://doi.org/10.1016/S0925-4005(02)00460-4
  5. M. H. Reddy and A. N. Chandukar, Thin Solid Films, 349, 200 (1999) https://doi.org/10.1016/S0040-6090(99)00194-7
  6. A. G. Thompson, Materials Letters, 30, 255 (1997) https://doi.org/10.1016/S0167-577X(96)00215-7
  7. N. S. Choudhury, R. P. Goehner, N. Lewis and R. W. Green, Thin Solid Films, 122, 231 (1984) https://doi.org/10.1016/0040-6090(84)90050-6
  8. E. Leja, T. Pisarkiewicz and A. Kolodziej, Thin Solid Films, 67, 45 (1998) https://doi.org/10.1016/0040-6090(80)90285-0
  9. R. Sanlines, C. Coluzza, D. Rosenfeld, F. Gozzo, Ph. Almeras and F. Levy, J. Appl. Phys., 73, 3997 (1993) https://doi.org/10.1063/1.352865
  10. S. Kaneko, I. Yagi, K. Murakami and M. Okuya, Solid State Ionics, 141, 463 (2001) https://doi.org/10.1016/S0167-2738(01)00847-5
  11. M. A. Paranjape, A. U. Mane, A. K. Raychaudhuri, K. Shalini, S. A. Shivashankar and B. R. Chakravarty, Thin Solid Films, 413, 8 (2002) https://doi.org/10.1016/S0040-6090(02)00446-7
  12. C. L. Lau and G. K. Werthein, J. Vacuum Sci. Tech., 15, 622 (1978) https://doi.org/10.1116/1.569642