DOI QR코드

DOI QR Code

Effect of the Applied Bias Voltage on the Formation of Vertically Well-Aligned Carbon Nanotubes

탄소 나노 튜브의 수직 배향에 대한 바이어스 인가 전압의 효과

  • Kim, Sung-Hoon (Department of Nano Materials Science & Engineering, Silla University)
  • 김성훈 (신라대학교 나노 소재 공학과)
  • Published : 2003.07.01

Abstract

Carbon nanotubes were formed on silicon substrate using microwave plasma-enhanced chemical vapor deposition method. The possibility of carbon nanotubes formation was related to the thickness of nickel catalyst. The growth behavior of carbon nanotubes under the identical thickness of nickel catalyst was strongly dependent on the magnitude of the applied bias voltage. High negative bias voltage (-400 V) gave the vertically well-aligned carbon nanotubes. The vertically well-aligned carbon nanotubes have the multi-walled structure with nickel catalyst at the end position of the nanotubes.

Keywords

References

  1. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs and C. Dekker, Nature, 286, 474 (1997) https://doi.org/10.1038/386474a0
  2. L. Marty, V. Bouchiat, A. M. Bonnot, M. Chaumont, T. Fournier, S. Decossas and S. Roche. Microelectronic Engineering, 61-62, 485 (2002) https://doi.org/10.1016/S0167-9317(02)00487-2
  3. J.-M. Bobard, H. Kind, T. Stockli and L.-O. Nilsson, Solid-State Electronics, 45, 893 (2001) https://doi.org/10.1016/S0038-1101(00)00213-6
  4. W. Z. Li, S. S. Xie, N. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G.Wang, Science, 274, 1701 (1996) https://doi.org/10.1126/science.274.5293.1701
  5. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Casell and H. Dai, Science, 283, 512 (1999) https://doi.org/10.1126/science.283.5401.512
  6. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rinzler-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fisher, A. M. Rao, P. C. Eklund, and R. E. Smalley, Appl. Phys. A, 67, 29 (1998) https://doi.org/10.1007/s003390050734
  7. R. Ma, C. L. Xu, B. Q. Wei, J. Liang, D. H. Wu and D. Li, J. Mater. Res. Bull., 34, 741 (1999) https://doi.org/10.1016/S0025-5408(99)00064-1
  8. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Sirgal and P. N. Provencio, Science, 282, 1105 (1998) https://doi.org/10.1126/science.282.5391.1105
  9. C. Bower, W. Zhu, J. Sungho and O. Zhou, Appl. Phy. Lett., 77, 830 (2000) https://doi.org/10.1063/1.1306658
  10. Y. Avigal, R. Kalish, Appl. Phy. Lett., 78, 2291 (2001) https://doi.org/10.1063/1.1365409
  11. Y. H. Mo, A. K. M. F. Kibria and K. S. Nahm, Synthetic Metals, 122, 443 (2001) https://doi.org/10.1016/S0379-6779(00)00565-8
  12. S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanoa and J. B. Nagy, Science, 267, 635 (1995) https://doi.org/10.1126/science.267.5202.1334
  13. X. Wang, Y. Liu, and D. Zhu, Chem. Phy. Lett., 340, 419 (2001) https://doi.org/10.1016/S0009-2614(01)00410-9