DOI QR코드

DOI QR Code

Effects of Annealing Temperature on the Local Current Conduction of Ferromagnetic Tunnel Junction

열처리에 따른 강자성 터널링 접합의 국소전도특성

  • Yoon, Tae-Sick (Research Center for Advanced Magnetic Materials, Chungnam National University) ;
  • Tsunoda, Masakiyo (Department of Electronic Engineering, Tohoku University) ;
  • Takahashi, Migaku (Department of Electronic Engineering, Tohoku University) ;
  • Li, Ying (Institute of Materials, School of Materials Science and Engineering, Shanghai University) ;
  • Park, Bum-Chan (Research Center for Advanced Magnetic Materials, Chungnam National University) ;
  • Kim, Cheol-Gi (Research Center for Advanced Magnetic Materials, Chungnam National University) ;
  • Kim, Chong-Oh (Research Center for Advanced Magnetic Materials, Chungnam National University)
  • 윤대식 (고기능성 자성재료 연구센터) ;
  • ;
  • ;
  • 이영 ;
  • 박범찬 (고기능성 자성재료 연구센터) ;
  • 김철기 (고기능성 자성재료 연구센터) ;
  • 김종오 (고기능성 자성재료 연구센터)
  • Published : 2003.04.01

Abstract

Ferromagnetic tunnel junctions, Ta/Cu/Ta/NiFe/Cu/$Mn_{75}$ $Ir_{25}$ $Co_{70}$ $Fe_{30}$/Al-oxide, were fabricated by do magnetron sputtering and plasma oxidation process. The effect of annealing temperature on the local transport properties of the ferromagnetic tunnel junctions was studied using contact-mode Atomic Force Microscopy (AFM). The current images reflected the distribution of the barrier height determined by local I-V analysis. The contrast of the current image became more homogeneous and smooth after annealing at $280^{\circ}C$. And the average barrier height $\phi_{ave}$ increased and its standard deviation $\sigma_{\phi}$ X decreased. For the cases of the annealing temperature more than $300^{\circ}C$, the contrast of the current image became large again. And the average barrier height $\phi_{ave}$ decreased and its standard deviation $\sigma_{\phi}$ increased. Also, the current histogram had a long tail in the high current region and became asymmetric. This result means the generation of the leakage current that is resulted from the local generation of a low barrier height region. In order to obtain the high tunnel magnetoresistance(TMR) ratio, the increase of the average barrier height and the decrease of the barrier height fluctuation must be strictly controlled.led.

Keywords

References

  1. H. F. Hanm, M. Oogane, H. Kubota, Y. Ando and T. Miyazaki, Appl. phys. Lett., 77, 283 (1991) https://doi.org/10.1063/1.126951
  2. H. F. Han, T. Daibou, M. Kamijo, K. Yaoita, H.Kubota, Y.Ando, T. Miyazaki, Jpn. J. Appl. Phys., 39, L439 (2000) https://doi.org/10.1143/JJAP.39.L439
  3. S. Tehrani, J. M. Slaughter, E. Chen, N. Durlam, J. Shi, M. Deherrera, IEEE Trans. Magn., 35, 2814 (1999) https://doi.org/10.1109/20.800991
  4. J. C. Slonczewski, Phys. Rev., B 39, 6995 (1989) https://doi.org/10.1103/PhysRevB.39.6995
  5. Y. Ando, H. Kameda, M. Hayashi, H. Kubota and T. Miyazaki, J. Magn. Soc. Japan., 24, 611 (2000) https://doi.org/10.3379/jmsjmag.24.611
  6. X. F. Han, T. Daibou, M. Kamijo, K. Yaoita, H. Kubota, Y. Ando, and T. Miyazaki, Jpn. J. Appl. Phys., 39, L439 (2000) https://doi.org/10.1143/JJAP.39.L439
  7. H. Kubota, T. Watabe, Y. Fukumoto, T. Miyazaki, J. Magn. Soc. Japan, 23, 67 (1999) https://doi.org/10.3379/jmsjmag.23.67
  8. S. Yuasa, T. Sato, T. Tamura, Y. Suzuki, H. Yamamori, K. Ando, T. Katayama, Europhys. Lett., 52, 344 (2000) https://doi.org/10.1209/epl/i2000-00445-5
  9. E. Nakashio, J. Sugawara, S. Onoue, S. Kumagai, IEEE Trans. Magn., 36, 2812 (2000) https://doi.org/10.1109/20.908597
  10. N. Goto and M. Yamamoto, Inst. Electr. Commnu. Eng. Tech. Rep., AP80-57, 43 (1980)
  11. T. Yamamoto, N. T. Chien, M. Ando, N. Goto, M. Hirayama and T. Ohmi, Jpn. J. Appl. Phys., 38, 2082 (1999) https://doi.org/10.1143/JJAP.38.2082
  12. Y. Saito, K. Sekine, M. Hirayama and T. Ohmi, Jpn. J. Appl. Phys., 38, 2329 (1999) https://doi.org/10.1143/JJAP.38.2329
  13. K. Nishikawa, S. Ogata, T. Syoyama, W. S. Cho, T. S. Yoon, M. Tsunoda and M.Takahashi, Journal of Magnetics, 7, 63 (2002) https://doi.org/10.4283/JMAG.2002.7.3.063
  14. T. Ohmi, S. Sugawa, M. Hirayama and Y. Saito, Jpn. J. Appl. Phys., 69, 1200 (2000)
  15. R. Wiesendanger, M. Bode, R. Dombrowski, M. Getzlaff, M. Morgenstern and C. , Wittneven, Jpn. J. Appl. Lett., 37, 3769 (1998) https://doi.org/10.1143/JJAP.37.3769
  16. A. Olbrich, B. Ebersberger and C. Boit, Appl. Phys. Lett., 73, 3114 (1998) https://doi.org/10.1063/1.122690
  17. V. Da Costa, F. Bardou, C. Beal, Y. Henry, J. P. Bucher and K. Ounadjela, J. Appl. Phys., 83, 6703 (1998) https://doi.org/10.1063/1.367814
  18. M. Hayashi, Y. Ando, H. Kubota and T. Miyazaki, J. Magn. Soc. Japan, 25, 759 (2001) https://doi.org/10.3379/jmsjmag.25.759
  19. Y. Ando, H. Kameda, H. Kubota and T.Miyazaki, J. Appl. Phys., 87, 5206 (2000) https://doi.org/10.1063/1.373296
  20. T.S.Yoon, M. Tsunoda, M. Takahashi, Ying Li, C.G. Kim and C.O. Kim, Journal of the Korean Magnetics Society,, (in press)
  21. Y. Ando, H. Kameda, H. Kubota and T. Miyazaki, Jpn. J. Appl. Phys., 38, L737 (1999) https://doi.org/10.1143/JJAP.38.737
  22. Y. Ando, H. Kubota, M. Hayashi, M. Kamijo, K. Yaoita, A. C. C. Yu, X. F. Han and T. Miyazaki, Jpn. J. Appl. Phys., 39, 5832 (2000) https://doi.org/10.1143/JJAP.39.5832