DOI QR코드

DOI QR Code

Characterizing the Thermal Stability of TiSi2 Film by Using the Statistical Experimental Method

통계적 실험 방법을 이용한 티타늄실리사이드의 열적안정성 연구

  • Cheong, Seong-Hwee (Department of Materials Science and Engineering, The University of Seoul) ;
  • Song, Oh-Sung (Department of Materials Science and Engineering, The University of Seoul)
  • 정성희 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Published : 2003.03.01

Abstract

A statistical experiment method was employed to investigate the window of the thermal stability of $TiSi_2$films which are popular for Ti-salicide and ohmic layers. The statistical experimental results showed that the first order term of $TiSi_2$thickness and annealing temperature was acceptable as a function of $\Delta$resistivity by 95% reliability criteria, and R-sq value implying a fit accuracy of the model also showed a high value of 93.80%. We found that $\Delta$resistivity of the $TiSi_2$film annealed at $700^{\circ}C$ for 1 hr changed from 3.35 to $0.379\mu$$\Omega$$\cdot$cm with increasing thickness from 185 to $703\AA$, and TEX>$\Delta$resistivity of the $TiSi_2$film with a fixed thickness of 444 $\AA$ changed from 0.074 to 17.12 $\mu$$\Omega$$\cdot$cm with increasing temperature increase from 600 to $800^{\circ}C$. From these results, we report that the process conditions of$ 692^{\circ}C$-1 hr, $715^{\circ}C$-1 hr, and 73$0^{\circ}C$-1 hr for $TiSi_2$($400 \AA$) are stable by the criteria of 1, 2, and 3 $\mu$$\Omega$$\cdot$cm of $\Delta$resistivity, respectively.

Keywords

References

  1. J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, E. Er, and S. Redkar, Appl. Phys. Lett., 78, 3091 (2001) https://doi.org/10.1063/1.1372621
  2. J. Prokop, C. E. Zybill, and S. Veprek, Thin Solid Films, 359, 39 (2000) https://doi.org/10.1016/S0040-6090(99)00654-9
  3. C. Detavernier, R. L. V. Meirhaeghe, and F. Cardon, J. Appl. Phys., 88, 133 (2000) https://doi.org/10.1063/1.373633
  4. C. M. Osburn, J. Y. Tsai and J. Sun, J. Electron Material, 25, 1725 (1996) https://doi.org/10.1007/s11664-996-0028-x
  5. J. Chen, J. P. Colinge, D. Flandre, R. Gillon, J. P. Raskin, and D. Vanhoenacker, J. Electrochem. Soc., 144(7), (1997) https://doi.org/10.1149/1.1837833
  6. J. J. Sun, J. Y. Tsai, and C. M. Osburn, IEEE Trans. Electron Devices, 45(9), 1946 (1998) https://doi.org/10.1109/16.711360
  7. F. Hong, G. A. Rozgonyi, and B. K. Patnaik, Appl. Phys. Lett., 61, 1519 (1992) https://doi.org/10.1063/1.108465
  8. F. Hong and G. A. Rozgonyi, J.Electrochem. Soc., 141, 3480 (1994) https://doi.org/10.1149/1.2059357
  9. C. Y. Kang, D. G. Kang, and J. W. Lee, J. Appl. Phys., 86, 5293 (1999) https://doi.org/10.1063/1.371513
  10. J. Lutze, G. Scott, and M. Manley, IEEE Electron Device Lett., 21, 155 (2000) https://doi.org/10.1109/55.830966
  11. H. Fang, M. C. Oztu, E. G. Seebauer, and D. E. Batchelor, J. Electrochem. Soc., 146, 4240 (1999) https://doi.org/10.1149/1.1392621
  12. C. G. Bucher, and U. Bourgund, Structural Safety, 7, 57 (1990) https://doi.org/10.1016/0167-4730(90)90012-E
  13. A. H. Langner, E. N. Loredo, D. C. Montgomery, A. H. Griffin, Robotics and Computer Integrated Manufacturing, 16, 377 (2000) https://doi.org/10.1016/S0736-5845(00)00016-8