DOI QR코드

DOI QR Code

High Density Inductively Coupled Plasma Etching of InP in BCl3-Based Chemistries

BCl3 기반의 혼합가스들을 이용한 InP 고밀도 유도결합 플라즈마 식각

  • Cho, Guan-Sik (School of Nano Engineering, Inge University/ Institute of Nano-Technology Applications) ;
  • Lim, Wan-tae (School of Nano Engineering, Inge University/ Institute of Nano-Technology Applications) ;
  • Baek, In-Kyoo (School of Nano Engineering, Inge University/ Institute of Nano-Technology Applications) ;
  • Lee, Je-won (School of Nano Engineering, Inge University/ Institute of Nano-Technology Applications) ;
  • Jeon, Min-hyun (School of Nano Engineering, Inge University/ Institute of Nano-Technology Applications)
  • 조관식 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 임완태 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 백인규 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 이제원 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 전민현 (인제대학교 나노공학부/나노기술 응용연구소)
  • Published : 2003.12.01

Abstract

We studied InP etching in high density planar inductively coupled $BCl_3$and $BCl_3$/Ar plasmas(PICP). The investigated process parameters were PICP source power, RIE chuck power, chamber pressure and $BCl_3$/Ar gas composition. It was found that increase of PICP source power and RIE chuck power increased etch rate of InP, while that of chamber pressure decreased etch rate. Etched InP surface was clean and smooth (RMS roughness <2 nm) with a moderate etch rate (300-500 $\AA$/min) after the planar $BCl_3$/Ar ICP etching. It may make it possible to open a new regime of InP etching with $CH_4$$H_2$-free plasma chemistry. Some amount of Ar addition (<50%) also improved etch rates of InP, while too much Ar addition reduced etch rates of InP.

Keywords

References

  1. H.S. Kim, G.Y. Yeom, J.W. Lee, and T.I. Kim, Thin Solid Films, 341, 180, (1999) https://doi.org/10.1016/S0040-6090(98)01551-X
  2. B.T. Lee, C.H. Park, S.D. Kim, H.S. Kim, J. Korean Vacuum Society, 8(4), 541 (1999)
  3. J.A. Diniz, J.W. Swart, K.B. Jung, J. Hong, and S.J. Pearton, Solid-State Electronics, 42(11), 1947 (1998) https://doi.org/10.1016/S0038-1101(98)00136-1
  4. J.W. Lee, C.R. Abernathy, S.J. Pearton, F. Ren, W.S. Hobson, R.J. Shul, C. Constantine, and C. Barratt, J. of Electrochemical Society, 144, 1417 (1997) https://doi.org/10.1149/1.1837604
  5. J. Hong, J.W. Lee, C.R. Abernathy, E.S. Lambers, S.J. Pearton, R.J. Shu, and W.S. Hobson, J. of Vac. Sci. Technol., A16, 1497 (1998) https://doi.org/10.1116/1.581176
  6. J.W. Lee, E.S. Lambers, C.R. Abernathy, S.J. Pearton, R.J. Shul, F. Ren, W.S. Hobson, and C. Constantine, Solid-State Electronics, 42, (1998)
  7. P.G. Jung, W.T. Lim, G.S. Cho, M.H. Jeon, J.Y. Lim, J.W. Lee, and K.S. Cho, J. Korean Vacuum Society, 11(2), 2002
  8. B.H.O, J.S. Jung, and S.G. Park, Surface and Coating Technology, 120-121, 752 (1999) https://doi.org/10.1016/S0257-8972(99)00370-9
  9. J.W. Lee, D. Hayes, C.R. Abernathy, S.J. Pearton, W.S. Hobson, and C. Constantine, J. of Electrochem. Soc., 144, L245 (1997) https://doi.org/10.1149/1.1837932
  10. J.W. Lee, R.J. Shu, G.A. Vawer, C.R. Abernathy, S.J. Pearton, and Y.B. Hahn, Jpn. J. Appl. Phys., 42 (38), (2003)
  11. H.G. Kang, S.H. Lim, Y.H. Im, Y.B. Hahn, J.S. Hwang, and B.Y. Han, J. Korean Institute of Electrical and Electronic Material Engineers, 14(2), 158 (2001)
  12. T. Maeda, J.W. Lee, R.J. Shu, J. Han, J. Hong, E.S. Lembers, S.J. Pearton, C.R. Abernathy, and W.S. Hobson, Appl. Surface Science 143, 174 (1999) https://doi.org/10.1016/S0169-4332(98)00594-7
  13. Y.B. Hahn, D.C. Hays, H. Cho, K.B. Jung, C.R. Abernathy, S.J. Pearon, and R.J. Shul, Applied Surface Science 147 (1999)
  14. W.T. Lim, I.K. Baek, P.G. Jung, J.W. Lee, G.S. Cho, J.I. Lee, K.S. Cho, and S.J. Pearton, Korean J. Materials Research, 13(4), 266 (2003) https://doi.org/10.3740/MRSK.2003.13.4.266
  15. I.K. Baek, W.T. Lim, S.R. Yoo, J.W. Lee, M.H. Jeon, W.W. Park, G.S. Cho, and S.J. Pearton, J. Kor. Inst. Surf. Eng., 36(4), 334 (2003)