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Theory of Thin Sample z-scan of a New Class of Nonlinear Materials

Yong K. Kim*

Abstract - We report the theory of thin-sample Z -scan for materials, viz. diffusion-dominated
photorefractives, having a nonlinearly induced phase that may be proportional to the spatial derivative
of the intensity profile. The on-axis far-field intensity is approximately an even function of the scan
distance on different positive and negative values for phase shift A . In case of positive phase shift,

the Z -scan graph shows a minimum and two maxima, while for the negative value, only one minimum
is observed. The fact is that far-field beam profiles display beam distortion and shift of the peak as
compared with Kerr-type or photovoltaic nonlinearities.
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1. Introduction

The Z -scan method is a highly sensitive, simple, and
versatile technique for measuring the sign and the magni-
tude of light-induced variations of the refractive index of
nonlinear optical materials [1]. Much research has been
done in the area of thin and thick sample Z -scan of Kerr-
type materials [2-3], with cascaded nonlinearities [4],
thermal nonlinearities [5], photovoltaic nonlinearities and
inhomogeneous and anisotropic nonlinearities [6-8]. In
general, a light beam focused into a nonlinear material un-
dergoes both phase and amplitude changes during propaga-
tion giving rise to a revised profile in the far-field. By
measuring far-field on-axis intensity or beam width as a
function of scan length around the rear focal plane of a
lens, the sign and magnitude of the effective nonlinear re-
fractive index can be calculated. In some cases, measure-
ment of beam profile and/or beam ellipticity can provide
valuable information regarding the nonlinearity, as seen for
instance in the case of inhomogeneousely induced nonlin-
earities, due to photovoltaic effect in photorefractives.
Photorefractive materials have been widely studied [6-9]
and used in applications ranging from holographic memo-
ries, beam coupling, phase conjugation, etc. There are two
kinds of induced nonlinearities in a photorefractive mate-
rial. One is the diffusion-dominated  type
An a Vi,e.g.,BaTiO, - These materials have the character-

istic of the nonlinearily induced phase shift that may de-
pend upon the spatial derivative of optical intensity.
The other type is An « 1,e.g.,LiNbO,, the photovoltaic
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type. In previous papers [10-11], we have discussed Z -
scan and p-scan for photovoltaic materials. It was shown
that the Z -scan graph has the same approximate shape as
that for materials with Kerr-type nonlinearity and the ef-
fective nonlinear refractive index coefficient was deter-
mined.

In this paper, we have developed the theoretical Z -scan
of diffusion dominated materials where the induced
nonlinearity is of the form An « V1., which depends upon
the spatial derivative of optical intensity. We show: (a)
first the Z -scan and the beam profile distribution in the far
field for Kerr-type materials for comparison; (b) the ex-
pression for the far field beam profiles during Z -scan of
materials where An « VI.; (¢) the Z -scan plots along with
the far field intensity profiles in this case; (d) comparison
with a simple physical picture; (e) differences between
positive and negative “derivative” nonlinearities.

2. Theoretical Model

Assuming a TEM)y, radially symmetric Gaussian beam of
beam waist radius w, traveling in the + z direction, the
electric field E can be written as:

_ w, o 1 ik .
E(”Z)*Re{E" w(z)exp[ ’ (wz(z)+2R(z)]:|exp[ @(z’m}

= Re{E(,(r,z) exp[—icb(z,t)}
ey

where E, denotes the complex envelope of E and is a
slowly varying function of z, wz(z)=w02 [1+z%/ zf] is the
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beam radius, R(z)=z[1+z2/7*] is the radius of curvature
of the wave front at z, z, =kw’ /2 is the Rayleigh length
of the beam, k=2 /2, is the propagation constant in free
space and 2 is the laser wavelength. g represents the
electric field at the focus defined by w(z)=w, and on the

optical axis. The exp[-id(z,t)] term contains all the radially

uniform phase variations. For a Kerr-type optical nonlin-
earity, the refractive index of the nonlinear material with a
Gaussian beam can be written as:

E| @

n=n,+n,

where n, is the linear refractive index. A more general

representation intensity-dependent refractive index can be
expressed in the form n=nj+ An(I) where [ is the optical

intensity or irradiance. In order to analyze the Z -scan data,
we need to calculate the electric field E at the observation
plane for any scan distance z of the sample. For analyzing
this electric field distribution, the nonlinear paraxial wave
equation which is similar to the nonlinear Schrodinger
equation for a Kerr-type nonlinearity must be solved
within the sample. If the sample length is much smaller
than the Rayleigh range, and if the phase changes in the
field caused by the nonlinear interaction are not
transformed into amplitude changes within the sample,
then the sample is considered to be thin (external self-
action) (2, 12].

By applying the slowly varying envelope approximation
and the thin-sample approximation [12, 14], the induced
phase of the electric field during propagation through the
nonlinear sample can be written as:

@yf An(D)k (3)
dz

where Z is the propagation distance within the sample.

Here z should not be confused with sample position z. In
case of thin sample and negligible nonlinear absorption,
Eq. (3) is solved to give the phase shift A® . For a thin
sample of thickness L, along which 7 is almost constant,
the phase shift will be A®(L)=+kAn(I)L . Since the

intensity distribution of the fundamental Gaussian beam is

I(r,2) =

2 2
cofor e 2] o

wi(z) | w(2)

we can obtain the total phase shift A® by integrating
£q.(3), using Eq.(4),
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AD(r,2)=A®, (z)expi: :vf(’z 2)] (5)

with

AD
20, (=22 ®)
@ 1+2°/7
where the phase factor, A® =kAn L, is related to the
optically induced on-axis phase shift at focus and An, is

on-axis nonlinear index change at the focus. The complex
electric field with the nonlinear phase shift term at the
focus (z = 0) can be written as:

2

E(r0)<E (0,0)exp[ —Wr - iAdl(r,O)] )

2
o

Expanding the Gaussian radially dependent portion of this
complex phase shift results in the series [1]

E(",O):E(()’O)i [_ l.A‘I;:'(O)]'" cxp{ _p2 } ®

w2 (0)

where the radius of each of the individual Gaussian term is
given by w2 (0)=w?/2m +1).
The optical field immediately behind the thin nonlinear

sample a distance z from the rear focal plane of the
external lens is represented by:

Er.o)E, exp(—ikrz ]i[—iACDO(O)]’" exp{ —r? }
m!

* w(z) 2r(z) 152 w2 (2)

©®

where w? (z)=w? /(2m +1) and all z-dependent values are

measured with respect to the rear focal plane of the external
lens; w?(z), R(z) are respectively the width and radius of

curvature of the radially symmetric Gaussian beam for arbitrary
scan distance z, and A®,(2)=AdD, /(1+(z/2,)*)"?, 24

denotes the Rayleigh length corresponding to w, . The far-

field optical field at detector plane for any sample position
z can be evaluated by Huygens-Fresnel propagation
integral [12].

Next, consider the nonlinear effect of the diffusion
dominated photorefractive materials described in the
introduction. This material has the characteristic of the
nonlinearily induced phase shift that may depend upon the
spatial derivative of optical intensity (thin-sample with
“derivative” nonlinearity). The phase of the optical field
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immediately behind the sample is, in this case, proportional
to the spatial derivative of the intensity profile. Thus,

A¢O:0=A¢0&k§en{“2”] (10)
r

w(z)

At the focus (z = (), the complex electric field can also be
written as:

E(r,0)=E(0,0)exp[_ . '; ACD(r,O)} (11)
r

o

As before, expanding the Gaussian components of these
complex phase shifts results in the series

E(r,O)=E(0,0)§[—i ':1(!”]'" p{

(12)

w m(O)}

where b(r) = —4r/w?(0) is a function of radial variation.

The optical field immediately behind the thin nonlinear
sample placed at distance z from the focus can be written
as:

—ind, (o) Farrw @]

m!

w —ikr
E = 2
(r.2)=E, e ex| [ZR(z) 2

* exp{— (2m+1)r2/w2(z)} (13)

where all z-dependent values are also measured with respect
to the rear focal plane of the external lens; wi(z), R(z) are
respectively the width and radius of curvature of the radially
symmetric Gaussian beam for arbitrary scan distance z,

Zp denotes the Rayleigh length corresponding to W, , and
also phase factor A® _(z)=A®, /(1+(2/z,)*)">.

To analyze the intensity profile for the diffusion
dominated photorefractive sample on the observation
plane, we also use the Huygens-Fresnel propagation
integral [12]. The far-field optical field pattern for any
sample position z is

E, (k,,z)=er(r,z)JO(k,r)dr (14)
0

where k has the connotation of a spatial transverse
variable according to k =k r/z I where z P denotes

the distance to the far-field after the sample. Terms in the
resulting series can be evaluated by use of [13]

Tx” exp(—ox*)J , (Bx)dx
0 (15)

BT(+v+1/2) {(””“)-v —ﬂ}

2;+1 (a+v+1)/2 F(V+1) ’

2 4o

where 'and F,' are the gamma function and confluent

hypergeometric function respectively. To calculate the far-
field pattern of the beam at the observation plane we used
the above relation. Using the properties of a Gaussian
beam [14], the normalized intensity at any point in the

observation plane I (k,, z) is given by:

|Ek,.2, A9, () (16)
|E(k, =0,2,A0, (z = O)f

Ik,,7,AD,)=

with far-field conditions, which propagation distance in
free space from the sample to the aperature plane is much

larger than Rayleigh length of the beam z,. In the

following section, we plot z-scan pictures and beam
profiles in the far-field for Kerr-type samples (or,
photovoltaic dominated photorefractive samples) and also
for the derivative nonlinearity of diffusion dominated
photorefractive samples.

3. Numerical Results

We have estimated the on-axis beam intensity variation
at the origin of observation plane according to the dis-
placement of sample around the focal point of the lens (Z -
scan). The procedure involves scanning the sample around
the rear focal plane of an external lens and observing the
far-field pattern. The variation of on-axis transmittance
with scan length gives magnitude and sign of n,. Beam

profiles in far-field for a lens with focal length 5 cm,

Ao=514 nm, initial beam intensity diameter 0.77 mm and
A®, (peak on-axis phase shift) = - 0.05 are computed for

various scan lengths.

Fig. 1 shows a plot of I (r,z) as a function of z and the
radial variation. This 3-D Fig. can be used in a Z -scan
transmittance measurement to determine the magnitude
and sign of n,. k, represents a far-field parameter and is

equal to k, =k,r/d , where d is the distance from the

sample to the observation plane in the far field. k, =0

signifies the on-axis position or r = 0. A typical z-scan be-
havior for nonlinearity around r = O (see Fig. 2 (a)) can be
seen with a complimentary behavior for large r (see Fig. 2
(b)), due to energy conservation.
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Fig. 1 Calculation of normalized intensity Z -scan curves
for Kerr-type samples withA®, =—-0.05, £ = 0.05

m, A, = 514nm, initial beam intensity diameter
0.77mm.
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Fig. 2 Calculated Z -scan intensity curves as Kerr-type
sample for on-axis variation (8) #=0, and (b) ra-
dial variation ' = 6.8mm.

For the optical nonlinearity, for instance, in a diffusion
dominated photorefractive material, the phase term of the
light distribution of the sample needs to be spatially differ-
entiated with respect to the radial coordinate space (thin-
sample Z -scan with “derivative” nonlinearity). We have

a3

Fig. 3 Beam profiles in far-field for the diffusion domi-
nated photorefractive sample (a) A®,=+0.05 and

(b) A®,=-0.05 with f = 0.05 m, A, = 514nm, the
laser beam intensity diameter 0.77mm.

considered observation-plane characteristics of an initial
Gaussian laser beam that passes through a thin sample of
such a material, as well as the far-field intensity-
distribution in non-Gaussian, as shown Fig. 3 and Fig. 4.
Fig. 3 (a) and 3 (b) show plots of far-field intensity as a
function of scan distance z and radial variation
[, (1/mm)] for thin-sample with positive and negative

derivative nonlinearity. These 3-D Fig.s can be used to
find the far-field on-axis intensity or the beam profile as a
function of scan length around the rear focal plane of the
external lens. The on-axis far-field intensity patterns are
approximately ar even function of the scan distance, see
Fig. 3, as well as Fig. 4 drawn for different positive and
negative values for A®
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Fig. 4 Calculated Z -scan intensity for diffusion domi-
nated photorefractive sample for variable value
A®, (peak on-axis phase shift).
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Fig. 5 Calculated Z - scan radial variation intensity curves
as “derivative” nonlinear samples with Ad_=+0.05

in (a) and (b), A®, =—0.05in (c) and (d).

In Fig. 4, we plot the on-axis variation of the intensity as a
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function of scan length for various positive and negative
A®, . Note that for positive A®_, the Z - scan graph

shows one minimum and two maxima, while for nega-
tive A®, , only one minimum is observed. The fact that the

z-scan is approximately an even function for A®«VJ (as
seen from Fig. 4) can be analytically argued as well (refer
to Appendix).

Fig. 5 also shows the calculated radial variation in the
far-field of the intensity for a “derivative” nonlinear sam-
ple. Note that at z = 0, the beam profile has a local mini-
mum on axis for both positive and negative A®,_, while for

sufficiently large ,z,, the profile monotonically decreases

from the on-axis value.

4. Conclusion

In conclusion, we have estimated the far-field intensity
distribution on optical axis as well as beam profile of both
Z -scan of Kemr-type materials and thin-sample Z -scan of
materials with derivative nonlinearities. The Z -scan
picture is symmetric with respect to the scan length Z . The
shape of the Z -scan graphs can be reconciled with a
simple physical picture. The sign of the nonlinearity can be
determined from the shape of the Z -scan graph. The peak
to valley intensity ratio depends on the magnitude of the
nonlinearity. Extension to anisotropic induced derivative
nonlinearities will be pursued in the future. Results should
be useful in characterizing the nonlinearities of diffusion
dominated photorefractive materials. It may be possible to
postulate whether the Z -scan graph will be symmetric or
nonsymmetric by examining the nature of the induced
nonlinearity.

Appendix

Let G ' denote a Gaussian function of 7, the radial coor-
dinate. The complex field immediately behind the thin
sample can be written as the product of a Gaussian G ' and
a complex exponential exp = (jor’) whose argument de-

notes the quadratic phase due to propagation. Note that the
+ sign corresponds to the phase before and after the geo-
metrical focus of the external lens (i.e., for 7 <0 and
Z >0), respectively. The induced phase is proportional to
the gradient of the intensity. The far-field on-axis optical
fields for positions of the sample at Z <0 and Z >0 can be
written in terms of the integrals I, ; respectively as:

1L,=[G'e?" " rdr (A1)
0

I,=[G'e"" "y (A2)
]

In (A2), we put r=—r , and noting that G ' is an even
function of r, then

v 2 ' ' - f . o
12=JG€ J=rG +ar )rdr ___J‘G e+1(rG ar )rdr
0 0

iy 2
=J.G«e”’G “rdr

0

thus

llllz ={TG'e_j(’G'"“’z’rdr}[TG'e““’cl'”"z’sds}
0 0
E 0 . 2 0 "
L)’ =[fc'e+f”c o ’sdsJ[jG'e-M7 '“'“rer

—

Using [, ~I,=0
- . 0 L,
JG'e‘f"G “rdr + jG' e rdr=0
4 —oo

Since G is an even function of r,

TG e Crdr =0

0

thus

f G (cosrG — jsinrGydr =2jG' (sinrGydr= 0
0 0
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