Poly(methyl methacrylate-co-styrene)/Silicate Nanocomposites Synthesized by Multistep Emulsion Polymerization

  • Park, Yeong-Suk (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Yoon-Kyung (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Chung, In-Jae (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2003.12.01

Abstract

Exfoliated poly(methyl methacrylate-co-styrene) [P(MMA-co-ST)]/silicate nanocomposites were synthesized through a multistep emulsion polymerization. The methyl methacrylate monomers were polymerized first and then the styrene monomers were polymerized. The nanocomposites had core-shell structures consisting of PMMA (core) and PS (shell); these structures were confirmed by $^1$H NMR spectroscopy and TEM, respectively. P(MMA-co-ST) copolymers showed two molecular weight profiles and two glass transition temperatures (T$_{g}$) in GPC and DMA measurements. At 30 $^{\circ}C$, the nanocomposites exhibited 83 and 91 % increases in their storage moduli relative to the neat copolymer because the silicate layers were dispersed uniformly in the polymer matrix.x.

Keywords

References

  1. Polym. Adv. Technol. v.7 M.Schneider;T.Pith;M.Lambia https://doi.org/10.1002/(SICI)1099-1581(199605)7:5/6<425::AID-PAT504>3.0.CO;2-N
  2. J. Appl. Polym. Sci. v.61 I.Luzinov;A.Voronov;S.Minko;R.Kraus;W.Wilke;A.Zhuk https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1101::AID-APP5>3.0.CO;2-Q
  3. Adv. Mater. v.11 F.Caruso;A.S.Susha;M.Giersig;H.Mohwald https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<950::AID-ADMA950>3.0.CO;2-T
  4. Langmuir v.16 I.Pastoriza-Santos;D.S.Koktysh;A.A.Mamedov;M.Giersig;N.A.Kotov;M.Liz-Marzan https://doi.org/10.1021/la991212g
  5. Chem. Mater. v.13 Q.Kalinina;E.Kumacheva https://doi.org/10.1021/cm000388x
  6. Macromolecules v.35 Q.Kalinina;E.Kumacheva https://doi.org/10.1021/ma011743n
  7. J. Am. Chem. Soc. v.123 D.Gan;A.Lyon https://doi.org/10.1021/ja015974l
  8. Coll. Polym. Sci. v.274 M.Okubo;H.Ahmad;M.Komura https://doi.org/10.1007/BF00655691
  9. Macrolomecules v.24 Y.C.Chen;V.Dimonie;M.S.EIAasser https://doi.org/10.1021/ma00013a007
  10. Macromolecules v.30 P.Marion;G.Beinert;D.Juhue;J.Lang https://doi.org/10.1021/ma960392n
  11. Macromolecules v.29 K.Landfester;C.Boefel;M.Lambia;H.W.Spiess https://doi.org/10.1021/ma960095i
  12. Macromolecules v.31 N.Dingenouts;Ch.Norhausen;M.Ballauff https://doi.org/10.1021/ma980985t
  13. Macromolecules v.32 S.Kirsch;A.Doerk;E.Bartsch;H.Sillescu https://doi.org/10.1021/ma980916e
  14. Macromolecules v.34 J.E.Jonsson;O.J.Karlsson;H.Hassander;B.Tornell https://doi.org/10.1021/ma992046m
  15. Macromolecules v.28 H.A.S.Schoonbrood;A.L.German;R.G.Gilbert https://doi.org/10.1021/ma00105a005
  16. Macromolecules v.34 C.Plessis;G.Arzamendi;J.R.Leiza;H.A.S.Schoonbrood;D.Charmot;J.M.Asua https://doi.org/10.1021/ma0020382
  17. Polymer v.42 G.D.Kim;D.H.Lee;B.Hoffmann;J.Kressler;G.Stoppelmann https://doi.org/10.1016/S0032-3861(00)00468-7
  18. Polym. Bull. v.42 M.W.Noh;D.C.Lee https://doi.org/10.1007/s002890050510
  19. Polymer v.41 M.Okamoto;S.Morita;H.Taguchi;Y.H.Kim;T.Kotaka;H.Tateyama https://doi.org/10.1016/S0032-3861(99)00655-2
  20. Macromol. Rapid Commun v.21 B.Hoffmann;C.Dietrich;R.Thomann;C.Friedrich;R.Mulhaupt https://doi.org/10.1002/(SICI)1521-3927(20000101)21:1<57::AID-MARC57>3.0.CO;2-E
  21. Macromolecules v.25 M.Seki;Y.Morishima;M.Kamachi https://doi.org/10.1021/ma00050a024
  22. Macromolecules v.28 Y.Morishima;S.Nomura;T.Ikeda;M.Seki;M.Kamachi https://doi.org/10.1021/ma00112a037
  23. Macromolecules v.30 H.Aota;S.I.Akaki;Y.Morishima;M.Kamachi https://doi.org/10.1021/ma970037c
  24. Chem. Mater. v.13 H.Y.Byun;M.H.Choi;I.J.Chung https://doi.org/10.1021/cm0102685
  25. Macromolecules v.34 Y.S.Choi;M.H.Choi;K.H.Wang;S.O.Kim;Y.K.Kim;I.J.Chung https://doi.org/10.1021/ma0106494
  26. Chem. Mater. v.14 Y.S.Choi;K.H.Wang;M.Xu;I.J.Chung https://doi.org/10.1021/cm0116020
  27. Chem. Mater. v.14 Y.K.Kim;Y.S.Choi;K.H.Wang;I.J.Chung https://doi.org/10.1021/cm020324h
  28. J. Polym. Sci. Polym. Phys. v.8 A.Blumstein;S.L.Malhotra;A.C.Watterson https://doi.org/10.1002/pol.1970.160080913
  29. J. Polym. Sci. Polym. Phys. v.9 A.Blumstein;K.K.Parikh;S.L.Malhotra;R.Blumstein https://doi.org/10.1002/pol.1971.160090910
  30. Macromolecules v.19 S.A.Heffner;F.A.Bovey;L.A.Verge;P.A.Mirau;A.E.Toneli https://doi.org/10.1021/ma00160a024
  31. J. Polym. Sci., Part A: Polym. Chem. v.29 S.Shen;M.S.ElAasser;V.L.Dimonie;J.W.Vanderhoff;E.D.Sudol https://doi.org/10.1002/pola.1991.080290610
  32. J. Polym. Sci. Polym. Chem. (ed.) v.21 D.I.Lee;T.Ishikawa https://doi.org/10.1002/pol.1983.170210115
  33. Ind. Eng. Chem. Prod. Res. Dev. v.24 D.R.Stutman;A.Klolin;M.S.EIAasser;J.W.Vanderhoff https://doi.org/10.1021/i300019a014
  34. Macromol. Res. v.10 J.G.Ryu;J.W.Lee;H.Kim https://doi.org/10.1007/BF03218304
  35. Macromol. Res. v.10 N.G.Sahoo;C.K.Das;A.B.Panda;P.Pramanik https://doi.org/10.1007/BF03218332