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NEW BOUNDS ON THE OVERFLOW PROBABILITY
IN JACKSON NETWORKS

JIYEON LEE!

ABSTRACT

We consider the probability that the total population of a stable Jackson
network reaches a given large value. By using the fluid limit of the reversed
network, we derive new upper and lower bounds on this probability, which
are sharper than those in Glasserman and Kou (1995). In particular, the
improved lower bound is useful for analyzing the performance of an impor-
tance sampling estimator for the overflow probability in Jackson tandem
networks. Bounds on the expected time to overflow are also obtained.
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1. INTRODUCTION
We analyze a rare-event probability in queueing networks such as

pk = P{network population reaches K before returning to 0,

after leaving 0}.

If we think of K as an upper limit on the network population, this probability
becomes a type of overflow probability. The networks we consider are Jackson
networks, namely networks of exponential servers with Bernoulli routing and
Poisson exogenous arrivals. It is generally accepted that simulations have been
used to estimate the overflow probability in Jackson networks because the over-
flow probability in these networks is analytically intractable. Based on a heuristic
application of large-deviations techniques, Parekh and Walrand (1989) proposed
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importance sampling estimators for simulation of the overflow probability in var-
ious Jackson networks. For example, in Jackson tandem networks their estima-
tor corresponds to interchanging the arrival rate and the slowest service rate.
Glasserman and Kou (1993) proved the asymptotic logarithmic limit of pg:

1
lim — logpx = log ps, 1.
Jim - logpc = logp (1.1)

where p, is the load of the most highly loaded node. Glasserman and Kou (1995)
also investigated the performance of Parekh and Walrand’s estimators by showing
the bounds on pg as follows:

arpE K™! < pr < agpK (K + 1), (1.2)

where aq, ay are constants and n is the number of nodes in the network. (1.1) is
the immediate consequence of bounds in (1.2).

In this paper we use the time reversal and the fluid limit to get new bounds
on pg which are sharper than (1.2). With the improved lower bound we can show
that Parekh and Walrand’s estimators have the bounded relative error without
the additional assumption proposed by Glasserman and Kou (1995). The bounds
on the expected time to overflow are also considered.

Anantharam and Ganesh (1994) established the bounds on the overflow prob-
ability based on the individual node, whereas we obtain the bounds based on the
total population.

2. NEw BoOuUNDS ON THE OVERFLOW PROBABILITY

A Jackson network consists of n nodes that operate on a FIFO (First-In-First-
Out) basis. Customers arrive at node ¢ from outside the system according to a
Poisson process with rate \; and, if necessary, wait in a queue until the server gets
free to serve. Service time is exponentially distributed with mean 1/u;. Once
service is completed, the customer is routed to node j with probability 7;; or
leaves the system with probability r;. := 1 — 371 ry;.

We say that node ¢ feeds node j if there is a sequence ki, ko, . .., kg such that
TikiTkiko " Tkej > 0. A network is ezogenously supplied if each node ¢ has an
exogenous arrival rate A; # 0 or can be fed by another node 5 for which Xj # 0.
The network is open if every node 7 has an exit probability r;. # 0 or feeds a node
J for which r;. # 0. We assume that the network is both exogenously supplied
and open.
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A Jackson network can be described as a Markov jump process { X (¢);t > 0}
on § = N", where the state Z = (z1,29,...,%,) € S depicts the system when
there are z; customers waiting or being served at node ¢.

Jackson (1957) gave an expression for the invariant measure of a Jackson
network. His results are restated in the following theorem (see Brémaud, 1981).

THEOREM 2.1. For an ezxogenously supplied and open Jackson network for
which the solution (\1,...,An) to the traffic equations

n
)\i:Xi‘{‘Z)\j"’ji, 1=12,...,n
i=1

satisfies the light traffic conditions

>\.
pii=—<1, i=12,...,n, (2.1)
Hi
the stationary distribution 7(Z) of £ = (z1,...,2Zn) € S is given by the product

n

(@) = [1(1 = pi)of.

1=1

The ratio p; is called the load on node i. We call a Jackson network stable if
the light traffic conditions (2.1) hold. We assume that the light traffic conditions
hold and X (0) = 0. We further assume that node 1 has the maximal load p,,
that is, p, = p1 > p; forall: =2,... n.

Let us define an overflow set by

Ck={f€S:z1+a9+ -+, = K},

the set of states in which the network population is exactly K. Then px can be
written by

pk = P{X(t) hits Ck before 0| X (t) leaves 0 }.
We bound pg by first bounding the stationary probability of the set Cx, 7(Ck).

LEMMA 2.1. For all K > 1,
bipk < m(Ck) < bepk,

where by and by are positive constants.
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PROOF. From Theorem 2.1, the stationary probability n(Ck) is given by

m(Ck) = Z Z H — pi) pz

1+ Fza=K i=1

fo-ne -5 (2)

1+ +ra=Ki=1

I

Il
:;]:
T
>
<

* X
HMN
7 ;
]
:j:
AN
IR
~—

where the last equality follows from p;/p, = 1.
Since p;/p. < 1for i =2,...,n, we can get the upper bound on 7(Ck):

7(Cr) < bapk,

where by = (1 — p.)p2 " [Ty (1 — pi)/(px — pi), independent of K.
To obtain the lower bound on 7(Cgk), we denote

= (K703---70)a

the state in which there are K customers at the maximally loaded node 1 and no
customers anywhere else. Clearly £x € Cx. Thus we have

Tr(CK) 2 blp*Ka
where by = (1 — p) [1125(1 — pi). O

REMARK. Glasserman and Kou (1995) obtained other bounds on n(Cgk) as

follows: .

n
pE 11 = p) < m(Ck) < pF [J1 = pi)(K +1)" 71 (2.2)
i=1 i=1
When n = 1, the upper bound in (2.2) meets that in Lemma 2.1, whereas for a
large value K, the bound derived in Lemma 2.1 is sharper than that in (2.2).

THEOREM 2.2. Consider an exogenously supplied and open Jackson network
which satisfies the stability condition. Then, for some positive constants ci,co
that do not depend on the population size K but may depend on the network
parameters, we have

a1pl <pr < capl. (2.3)
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For large enough K, we have the explicit estimates given by

S + ) _ p1(l —ri) (1 B AN - ,u17”11)
Y M+ pi(l =) p1—pari )’

where A} is defined in (3.9) and

Ccl = (24)

PROOF. The proof is given in Section 3. O

REMARK. Glasserman and Kou (1995) pointed out one simple case of Jack-
son tandem network in which Theorem 2.2 holds. In an n-node Jackson tandem
network with an arrival rate A and service rates u; satisfying

"1
> E ;i', (26)
i=1

they showed that px > bpX with a constant b. Under the condition (2.6), they
also proved that Parekh and Walrand’s estimators have the bounded relative
error in certain parameter regions. However, from Theorem 2.2 we do not need

> | =

the additional condition in (2.6) any more to get the same result.

COROLLARY 2.1. Let Sk be the first hitting time at Cx, starting from 0.
Then, for sufficiently large K, we have

dip; " < E(Sk) < dop; ¥,
where dy and dy are constants, independent of K.

PROOF. Let § have the distribution of the time taken to return to 6, start-
ing from 0 and conditioned on not visiting C'x and let 41,92, ... be iid random
variables with the distribution of §. Let A denote the time to hit Ck, starting
from 0 and conditioned on not returning to 0. Then, since the evolution of the
process starts afresh each time it hits 0, it is easy to see that

A, with probability px,

S — v 2.7
K Z d + A, with probability 1 — pg, 20
k=1
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where v denotes the number of returns to 0 before hitting C;, which is a geometric
random variable with parameter pg, i.e.,

Plv=1i} = (1-px) " 'pk. i=1,2,...
From (2.7) it follows that

1—
E(Sk) = ——XE(9) + E(D)
PK
1
= —{(1-pr)EQ) +pxE(A)}.
PK
Here (1 — px)E(d) + px E(A) is the expected time taken to either return to 0

or visit Ck, starting from 0. This expected time is clearly dominated by the

expected time to return to 0, starting from 0 in the network with infinite buffers,
denoted by E(Sp). So, we have

E(Sk) < —E(Sy).
Pk

From the renewal theorem it follows that
1

" )
W(O) — (Z Z)
E(So)
since the expected time spent in 0 in each visit to it is (3> X;)7! and the expected
time between visits is £(Sp). Substituting for F(Sp) above gives

E(Sk) < dap; ¥,

where
n

& = céx [L=p)™

=1

can be explicitly computed from the estimate for ¢; in Theorem 2.2.

Now we observe that § stochastically dominates the time spent in 0, which
is exponentially distributed random variable of rate 5" ;. Since an independent
geometric sum of independent exponential random variables is also exponential,
it follows that )., &; stochastically dominates an exponential random variable
of rate px 3 X;. Using (2.7), we obtain

1 -pk
PR A
Hence, the lower bound on E(Sk) for large enough K is given by
E(Sk) > dip; ¥,

where dy = 1/(2¢co S° ). O

E(Sk) >
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3. PROOF OF THEOREM 2.2

In this section, we discuss the proof of Theorem 2.2. The upper bound is
given in Section 3.1 and the lower bound is derived in Section 3.2.

3.1. The upper bound

Let X (n) be a discrete-time Markov chain obtained by embedding at the
virtual jump times of the original process X (¢). The virtual jump process is
the sum of the exogenous arrival process and the virtual departure processes of
the individual nodes. These are independent Poisson processes, with the future
independent of the current state; hence the virtual jump process is Poisson of
rate S_(X; + u;) with the future independent of the current state. Then, this
uniformized Markov chain X(n) has the same stationary distribution 7 as the
original process X (t).

Next, let ?(n) be obtained from )?(n) by watching it in the set {0} U Ck.
Then, ?(n) is also a discrete-time Markov chain with the stationary distribution
7 given by

@) - { %%CK w@)}_lw@)

and the transition matrix P defined by P(Z,7) = P{Y(n + 1) = §|Y(n) = 7}
for all Z,7 € {0} U Ck. Specifically, we have
P(0,0) = P{X(n) =0 before X(n) € Cx|X(1) #0,X(0) =
x P{X (1) # 0|X(0) = 0} + P{X(1) = 0| X(0) = 0}

S - s S ~ o
= = P{return to 0 before hitting Cx|X (1) # 0,X(0) =0
Do+ pi | o ©) J
;M
Z(/\z + Nz)
% -
= _Z (1 —pK) + ——_Zﬂ——
2 (A + pa) 2 (N + )
PK 2 X
= 1— —==—— (Anantharam and Ganesh, 1994) (3.1)

S+ )
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Therefore,

using 1 — P(0,0) = Y zeCx P(0, 7).
Now, let Y (n) be the time reversal of ?(n), so Y(n) is a Markov chain with
the same stationary distribution 7 and its transition matrix P given by

TGPy, 2) (Z)/’ ), z,7 € {0} U Ck.

1 B iy oo+ )
PK = 7(Z)P(Z,0) = e
§ fEEC:K ZAZ

Since ﬁ(a’:’, 6) <1 for all ¥ € Ck, the upper bound in (2.3) and the estimate for
¢z in (2.5) are obtained from Lemma 2.1.

3.2. The lower bound

Let Z (n) be a discrete-time Markov chain obtained from X (n) by watching
it in the set {0, Zx}, and let @ be its transition matrix. Then, since £x € Ck, it
is easy to see that

P(6,0) < 03,0

\_/

Therefore, from (3.1) and the fact that Q(6 0) + Q(0, Zx) =1 it follows that

> Q0,51 ZEE ), 32)

Let Q denote the transition matrix of the time reversal of Z(n) Substituting for
Q(0,Zk) in (3.2) gives

S+

EL g)2=de + 1) (3.3)
(0) oA

If we can show that @(f K, 6) is bounded below by a positive constant, which is
independent of K, then it is easy to see, from (3.3) and Theorem 2.1, that

pr > cipk.
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Now, to complete the proof of Theorem 2.2 we have to show that @(EK, 6) > 0,
uniformly in K and estimate the constant ¢;. This consists of two parts. In the
first part we use a fluid limit of the time reversal to show that with sufficiently
high probability, the queue length process X;(t) at node 1, starting from K,
stays below K after its fluid limit hits O until the reversed network X (t), starting
from Z'x, becomes empty. In the second part we construct a new stable Jackson
network. A queue length at each node of this new Jackson network dominates
that of the original reversed network. Then we prove that the process Xi(t),
starting from K, does not hit K until its fluid limit reaches 0, with probability
bounded away from 0.

1. The fluid limit of the time reversal. Let )Z'(t) be the time reversal of the
original process X (t). Then, it is known that the time reversal X (t) is a Markov
jump process for a different Jackson network, with the same number of nodes but
different parameters as follows (Walrand, 1988):

Xi = )\ir,;, 7= 1,2,...,n,

fi = i, i=1,2,...,n,

~ Aj .

Ty = )\_]_rjia 4,1 = 1,2a"' y 1,
2

N A .

5. = :\—z_, 1=1,2,...,n,
i

where tildes refer to the corresponding quantities in the reversed Jackson network.
Also, if the original network is exogenously supplied and open, then so is its time
reversal. Moreover, the solutions to the traffic equations of the time-reversed
network are also the same, i.e.,

Let XX (t) denote the Markov jump process when the time reversal X (t) is
started with £x. It was shown in Anantharam et al. (1990) that the process
XE(t) converges to a fluid limit X/(¢) in the sense that, for any ¢; > 0 and all
€ > €,

1 ~
lim P{ sup H—XK(Kt)—Xf(t)H > e
K~oo Lo<i<T! K

“%X’K(O) _ Xf(O)H < 60} —0,
(3.4)

where [ X|| = max|X;| and T = inf{t > 0: X/(t) = 0foralli =1,...,n}. It

was also proved in Anantharam and Ganesh (1994) that > 7 ; Xif (t), the total
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quantity of fluid in the network, is strictly decreasing at a positive rate as long
as the amount of fluid is not zero. Furthermore, the fluid limit Xif (t) at node i
stays at zero after it reaches zero until the total amount of fluid becomes empty.
In other words, if we let T; := inf{t > 0: Xz-f(t) =0} fori1=1,2,...,n, then

X/(t)=0 forall T;<t<T, (3.5)

where T is the time at which the total amount of fluid > 7, Xif(t) hits zero. By
using the relation to the fuid limit we can obtain bounds on the process X{#(t),
the number of customers in the maximally loaded node 1.
Observe that
1 ~
lim —XX(0) =X/
Jim X7 (0) = X7 (0)

exists for 4 = 1,2,...,n. Then, from (3.4) we can determine that the following
statements are true with probability going to one as K goes to infinity;

XE(@t)<eK forall KT, <t<KT (3.6)

and ,
S XM(KT) < eK (3.7)
i=1

for all € > 0.

Let Tk denote the first time that the actual queue length process XK (t) hits
the state 0. Then, by applying Corollary 1 in Anantharam (1989) it follows from
(3.7) that T — KT is stochastically dominated by the sum of eK id random vari-
ables of finite mean and variance. Since the exogenous arrival process is Poisson
of rate _ );, the total number of exogenous arrivals in the period [KT, Ti](taken
to be empty if KT > Tk ) is less than a constant times eK, with probability going
to one as K — oo. This implies that with asymptotic probability one,

Z)?f{(t) < Const-eK forall KT <t<Tkg,
=1

where Const denotes a constant which is independent of K and € > 0 is arbitrary.
This allows us to extend the validity of (3.6) through the period [KTj, Tk], that

is,

XK(t) < Const-eK forall KT <t< Tk, (3.8)
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with asymptotic probability one.

2. Constructing o new stable Jackson network. Now, we investigate the process
)Z'lK(t) during the time period (0, KT;). Let X'(t) denote the process started in
the same initial condition as X K(t), but with the output of the node 1 replaced by
its virtual departure process of the reversed network. Then, it evolves like another
Jackson network of which inflow rates are given by the solution (A}, X, ..., )
to the generalized traffic equation (Goodman and Massey, 1984):

- n
/\; = Xi + ﬁl'Fli -+ Z min(/\;-,ﬁj)Fji, 1=1,2,...,n. (39)
J=2

In addition, we can see that for all sample paths w, the process X '(t; w) dominates
XK (t;w), that is,

X!(t;w) > XE(t;,w) forall >0, i=1,2,...,n

To prove this, we apply the coloring arguments introduced in Anantharam and
Ganesh (1994). Color red the virtual departures from node 1 that are not actual
departures and color blue all other departures from all nodes and exogenous
arrivals. Then, red customers can arrive only when node 1 is empty. Observe
that when a service occurs at a node with nonempty queue, we can decide which
customer in the queue departs without affecting the process of total number
of customers at the nodes. So, if we assume that blue customers always have
precedence over red customers, i.e. when a service takes place at node i, red
customer at node ¢ does not move unless there are no blue customers at node 1,
it follows that XK (t), the process of blue customers is dominated by X '(t), the
process of all customers.

Now, we check the stability of new Jackson network evolved by the process
X'(t). Let us define

. n
d)l(ﬁ) :X2+ﬁ1F11+Zmln(n]7ﬁ])?jza 1= 1,2,,n
i=2
for a vector 7 := (n1,m2,...,7m,). Then, the solution (X, A5,..., L) to_'the
generalized traffic equation in (3.9) is the unique fixed point of ¢. For X :=
(A1, A2,...,An), the solution to the traffic equation of the original Jackson net-
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work, we have

1o = b
¢z‘<—)\) = /\i+.ul7'1i+zmm(_)‘ja,uj>"'ji
Px =2 Px
1z 1
< =N+ ifut Y, =\
P P
1
= ——/\ia
P

since p, = p; < 1. From the fact that ¢; is increasing it follows that A < \;/p.
for all ¢ = 1,2,...,n. Therefore we obtain A} < g1 and A, < p; from p; < p, for
i = 2,...,n. Suppose that X| = p;. Then (A}, A},...,A)) can be a solution to
the traffic equation of the original Jackson network. It implies u; = Aq, which
contradicts to the stability of the original network. Hence we can conclude that
this new Jackson network is still stable.

Now, if we consider an initial condition where queues outside node 1 are in
their stationary distributions, then the external arrival process into node 1 is
Poisson of rate A} — 171 because the departure process at each node is Poisson
of rate A} and 111711 = p171:. This external arrival process dominates the external
arrival process into node 1 in the process X' (t), wherein the queues outside node
1 were initially empty. This can also be shown using the coloring technique
employed above. Color red all customers who are in nodes 2, ..., n initially and
color blue all other customers who arrive from outside the network. If we let
blue customers have preemptive service priority at each node 2,...,n, then blue
customers who get into the node 1 constitute the external arrival process while all
customers including red customers who arrive at node 1 form a Poisson process.
We thus see that X 1(t) is dominated by a Markov jump process M(t) of arrival
rate A} — 1711, service rate p;, the transition probability to itself after the service
r11, and started at M(0) = K. It can be seen that for the process M (t),

pi{l —ri1) ( N —u17“11>
P{M(t) = 0 before M{t) = K} > 1-— 3.10
M) () ) A+ w1l —=rn) B1 — g (3.10)

for all K. Notice that the first term on the right-hand side of (3.10) is the
probability that M(¢) is decreased by one before it is increased by one or jumps
to itself and the second term is less than the probability that M (¢) hits 0 before
K, starting from K — 1 given by

{1 _ <)\'1 - mTu)K }—1 (1 A —M1T11>
H1 — H1T11 M1 — BT
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for all K > 1.
Let Ty := inf{t > 0 : M(t) = 0}. Since the stable Markov jump process M (t)
does not grow by K in time linear in K, with probability one, we can have

lim P{M(t) < K forall Ty <t < KT} } = 1. (3.11)

K-

Hence X K(t), which is dominated by M(t), does not hit K before the time KT}

with probability bounded uniformly away from zero because A < p; and rjp < 1.
Combining this with (3.8) gives )A(:f(t) < K for all 0 < t < Tk with a positive

probability, independent of K. Thus X (t) with initial state Zx satisfies

liminf P{X () = 0 before X(t) hits Zx} > 0.
K—oo

Then, since the time reversal of the watching of the embedding is the same as
the watching of the embedding the time reversal, we have that Q(Zx,0) > 0.
Further, for large enough K, it follows from (3.8), (3.10), and (3.11) that

p1(l—ru) 1 - N = pirn
)

+ (1 —ri Hy — M1l

A
which implies the estimate for ¢; in (2.4).
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