재귀원형군의 일대일 서로소인 경로 커버

One-to-One Disjoint Path Covers in Recursive Circulants

  • 박정흠 (가톨릭대학교 컴퓨터정보공학부)
  • 발행 : 2003.12.01

초록

이 논문에서는 주어진 두 정점 사이에 다른 모든 정점을 정확히 한번 지나는 k개의 서로소인 경로가 존재하는가 하는 일대일 서로소인 경로 커버 문제를 제안한다. 임의의 k, 임의의 두 정점 사이에 일대일 서로소인 경로 커버를 가지는 그래프는 해밀톤 연결되어 있다는 것보다 강한 해밀톤 성질을 가진다. 재귀원형군에서 이 문제를 고찰하여, 임의의$k(1{\leq}k{\leq}m)$에 대해서 $ G(2^m,4)$, $m{\geq}3$은 임의의 두 정점 사이에 k개의 경로로 이루어진 일대일 서로소인 경로 커버가 존재함을 보인다.

In this paper, we propose a problem, called one-to-one disjoint path cover problem, whether or not there exist k disjoint paths joining a pair of vertices which pass through all the vertices other than the two exactly once. A graph which for an arbitrary k, has a one-to-one disjoint path cover between an arbitrary pair of vertices has a hamiltonian property stronger than hamiltonian-connectedness. We investigate this problem on recursive circulants and prove that for an arbitrary k $k(1{\leq}k{\leq}m)$$ G(2^m,4)$,$m{\geq}3$, has a one-to-one disjoint path cover consisting of k paths between an arbitrary pair of vortices.

키워드

참고문헌

  1. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, 5th Printing, American Elsevier Publishing Co. Inc., 1976
  2. Y. Ishigami, 'The wide-diameter of the n-dimensional toroidal mesh,' Networks, vol. 27, pp. 257-266, 1996 https://doi.org/10.1002/(SICI)1097-0037(199607)27:4<257::AID-NET1>3.0.CO;2-F
  3. D-R. Duh and G.-H. Chen, 'On the Rabin number problem,' Networks, vol. 30(3), pp. 219-230, 1997 https://doi.org/10.1002/(SICI)1097-0037(199710)30:3<219::AID-NET6>3.0.CO;2-O
  4. F. Harary and M. Lewinter, 'The starlike trees which span a hypercube,' Computers & Mathematics with Applications, vol. 15(4), pp. 299-302, 1988 https://doi.org/10.1016/0898-1221(88)90215-5
  5. H. Enomoto and K. Ota, 'Partitions of a graph into paths with prescribed endvertices and lengths,' Journal of Graph Theory, vol. 34(2), pp. 163-169, June 2000 https://doi.org/10.1002/1097-0118(200006)34:2<163::AID-JGT5>3.0.CO;2-K
  6. J.-H. Park and K.-Y. Chwa, 'Recursive circulants and their embeddings among hypercubes,' Theoretical Computer Science, vol. 244, pp. 35-62, Aug. 2000 https://doi.org/10.1016/S0304-3975(00)00176-6
  7. C. Kim, J. Choi and H.-S. Lim, 'Embedding Full Ternary Trees into Recursive Circulants.' Lecture Notes in Computer Science 2510, pp. 874-882, 2001
  8. H.-S. Lim, J.-H. Park and K.-Y. Chaw, 'Embedding trees into recursive circulants,' Discrete Applied Mathematics, vol. 69, pp. 83-99, 1996 https://doi.org/10.1016/0166-218X(95)00078-6
  9. D.K.Biss, 'Hamiltonian decomposition of recursive circulant graphs,' Discrete Mathematics, vol. 214, pp. 89-99, Mar. 2000 https://doi.org/10.1016/S0012-365X(99)00199-5
  10. C. Micheneau, 'Disjoint Hamiltonian cycles in recursive circulant graphs,' Information Processing Letters, vol. 61, pp. 259-264, Mar. 1997 https://doi.org/10.1016/S0020-0190(97)00020-3
  11. J.-H. Park, 'Hamiltonian decomposition of recursive circulants,' International Symposium on Algorithms and Computation ISAAC'98 (LNCS #1533), Taejon, Korea, pp. 297-306, Dec. 1998
  12. T. Araki and Y. Shiba, 'Pancyclicity of recursive circulant graphs,' Information processing Letters, vol. 81, pp. 187-190, Feb. 2002 https://doi.org/10.1016/S0020-0190(01)00226-5
  13. Y.-C. Chen, J.J.M. Tan, L.-H. Hsu, and S.-S. Kao, 'Super-connectivity and super-edge-connectivity for some interconnection networks,' Applied Mathematics and Computation, vol. 140, pp. 245-254, Aug. 2003 https://doi.org/10.1016/S0096-3003(02)00223-0
  14. G. Fertin and A. Raspaud, 'Recognizing Recursive Circulant Graphs G(cd^m,d),' preprint 2002
  15. M.E. Muzychuk and G. Tinhof, 'Recognizing circulant graphs in polynomial time: An application of association schemes,' The Electronic Journal of Combinatorics, vol. 8, #R26, 2001
  16. C-H. Tsai; J.M. Tan, Y.-C.Chuang, and L.-H. Hsu, 'Fault-free cycles and links in faulty recursive circulant graphs,' in Proc. of Workshop on Algorithms and Theory of Computation ICS2000, pp. 74-77, 2000