DOI QR코드

DOI QR Code

Atomistic Modeling of Spherical Nano Abrasive-Substrate Interaction

절삭용 구형나노입자와 기판 상호작용에 관한 원자단위 모델링

  • 강정원 (중앙대학교 전자전기공학부) ;
  • 송기오 (중앙대학교 전자전기공학부) ;
  • 최원영 (중앙대학교 전자전기공학부) ;
  • 변기량 (중앙대학교 전자전기공학부) ;
  • 이재경 (중앙대학교 전자전기공학부) ;
  • 황호정 (중앙대학교 전자전기공학부)
  • Published : 2003.12.01

Abstract

This paper shows the results of atomistic modeling for the interaction between spherical nano abrasive and substrate in chemical mechanical polishing processes. Atomistic modeling was achieved from 2-dimensional molecular dynamics simulations using the Lennard-Jones 12-6 potentials. The abrasive dynamics was modeled by three cases, such as slipping, rolling, and rotating. Simulation results showed that the different dynamics of the abrasive results the different features of surfaces. This model can be extended to investigate the 3-dimensional chemical mechanical polishing processes.

Keywords

References

  1. MRS Bulletin v.27 no.10 Advances in chemical mechanical planarization R.K.Singh;R.Bajaj https://doi.org/10.1557/mrs2002.244
  2. MRS Bulletin v.27 no.10 Fundamentals of slurry design for CMP of metal and dielectric materials R.K.Singh;S.M.Lee;K.S.Choi;G.B.Basim;W.Choi;Z.Chen;B.M.Moudgil https://doi.org/10.1557/mrs2002.245
  3. MRS Bulletin v.27 no.10 Integration challengers for CMP of copper R.Bajaj;A.Zutshi;R.Surana;M.Naik;T.Pan https://doi.org/10.1557/mrs2002.249
  4. MRS Bulletin v.27 no.10 The future of CMP D.Evans https://doi.org/10.1557/mrs2002.250
  5. 전기전자재료학회논문지 v.15 no.11 반경험적인 실험설계 기법을 이용한 CMP 공정 변수의 최적화 이경진;김상용;서용진 https://doi.org/10.4313/JKEM.2002.15.11.939
  6. 전기전자재료학회논문지 v.15 no.10 기계화학적 연마를 이용한 트렌치 구조의 산화막 평탄화 김철복;김상용;서용진 https://doi.org/10.4313/JKEM.2002.15.10.838
  7. 전기전자재료학회논문지 v.15 no.10 실리카 슬러리의 희석과 연마제의 첨가가 CMP 특성에 미치는 영향 박창준;김상용;서용진 https://doi.org/10.4313/JKEM.2002.15.10.851
  8. Wear v.242 no.1-2 M.D. Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting R.Komanduri;N.Chandrasekarna;L.M.Raff https://doi.org/10.1016/S0043-1648(00)00389-6
  9. Mater. Sci. Eng. A v.311 no.1-2 MD simulation of exit failure in nanometric cutting R.Komanduri;N.Chandrasekarna;L.M.Raff https://doi.org/10.1016/S0921-5093(01)00960-1
  10. Proc. of the 1. Mech. E. (Lon) B v.215 no.12 A Review on the Molecular Dynamics (MD) Simulation of Machining R.Komanduri;L.M.Raff https://doi.org/10.1243/0954405011519484
  11. Jap. J. Appl. Phys. v.41 no.11B Molecular dynamics annalysis of effects of velocity and loading on the nano indentation T.H.Fang;S.R.Jian;D.S.Chuu https://doi.org/10.1143/JJAP.41.L1328
  12. Surf. Sci. v.501 no.1-2 Molecular dynamics simulation of nanolithography process using atomic force microscopy T.H.Fang;C.I.Weng;J.G.Chang https://doi.org/10.1016/S0039-6028(01)01938-0
  13. Nanotechnology v.11 no.3 Tree-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale T.H.Fang;C.I.Weng https://doi.org/10.1088/0957-4484/11/3/302
  14. Jap. J. Appl. Phys. v.41 no.4B Development of new tight-binding molecular dynamics program to simulate chemical- mechanical polishing processes T.Yokosuka;H.Kurokawa;S.Takami;M.Kubo;A.Miyamoto;A.Imanura https://doi.org/10.1143/JJAP.41.2410
  15. Phys. Rev. B v.67 no.2 Atomistic simulations of spherical indentations in nanocrystalline gold D.Feichtinger;P.M.Derlet;H.VanSwygenhoven https://doi.org/10.1103/PhysRevB.67.024113
  16. Appl. Phys. Lett. v.81 no.10 Simulation of chemical mechanical planarization of copper with molecular dynamics Y.Ye;R.Biswas;A.Bastawros;A.Chandra https://doi.org/10.1063/1.1505113
  17. Nanotechnology v.14 no.3 Molecular dynamics simulation of nanoscale machining of copper Y.Ye;R.Biswas;J.R.Morris;A.Bastawros;A.Chandra https://doi.org/10.1088/0957-4484/14/3/307
  18. J. Mater. Proc. Tech. v.59 no.4 A study on microcutting for the configuration of tools using molecular dynamics J.D.Kim;C.H.Moon https://doi.org/10.1016/0924-0136(95)02162-0
  19. Wear v.211 no.1 Towards a deeper understanding of wear and friction on the atomic scale-a molecular dynamics analysis L.Zhang;H.Tanaka https://doi.org/10.1016/S0043-1648(97)00073-2
  20. Tribology Int. v.31 no.8 Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding L.Zhang;H.Tanaka https://doi.org/10.1016/S0301-679X(98)00064-4
  21. Thin Solid Films v.334 no.1-2 Micromachining of pure silicon by molecular dynamics T.Nozaki;M.Doyama;Y.Kogure;T.Yokotsuka https://doi.org/10.1016/S0040-6090(98)01148-1
  22. Nucl. Instru. Meth. Phys. B v.153 no.1-4 Cutting, compression and shear of silicon small single crystals M.Doyama;T.Nozaki;Y.Kogure https://doi.org/10.1016/S0168-583X(99)00196-2
  23. Nanostructured Mater. v.12 no.1-4 Plastic deformation of pure silicon nanocrystals by molecular dynamics M.Doyama;T.Nozaki;Y.Kogure;T.Yokotsuka https://doi.org/10.1016/S0965-9773(99)00129-4
  24. Computer Simulation of Liquids M.P.Allen;D.J.Tidesley https://doi.org/10.1016/S0965-9773(99)00129-4
  25. M. P. Allen and D. J. Tildesley, "Computer Simulation of Liquids", Oxford, Clarendon, p. 71, 1987.