A Study on the Limit of Dynamic Rrange Improvement of Complementary Con-elation OTDR Caused by the Increased Measurement Cycle at Long Code Length

Complementary Correlation OTDR에서의 긴 코드 길이에 따른 측정시간 증가에 의한 Dynamic Range 증가 제한에 대한 연구

  • 김동선 (서울대학교 전기컴퓨터공학부) ;
  • 박재홍 (서울대학교 전기컴퓨터공학부)
  • Published : 2003.11.01

Abstract

The limitation on the dynamic range improvement of the complementary correlation optical time domain reflectometer(CCOTDR) is presented. In CCOTDR, the improvement of dynamic range is function of both the averaging number of measurement cycles and the length of codes. The trade off between the averaging number and the code length restricts the improvement of the dynamic range and a very long code is not effective to improve the dynamic range. In this paper, the improvement limitation on dynamic range caused by the trade off between the averaging number and the code length is presented. For derivation of the trade off, the number of one measurement cycles employing a conventional single pulse method and employing a complementary code method are presented and compared. And the effective maximum code length is presented in addition.

CCOTDR (complementary correlation optical time domain reflectometer)의 dynamic range는 사용된 코드의 길이와 평균 횟수에 따라 증가한다. OTDR의 전체 측정 시간이 제한된 경우에는 코드 길이를 늘이게 되면 평균 횟수를 줄여야 한다. 이와 같은 관계 때문에 코드 길이가 일정 이상 증가하면 dynamic range의 증가 정도가 어느 이상 커지지 않는다. 본 논문에서는 전체 측정 시간이 제한된 경우에 단일 펄스를 사용한 측정 방법에서 1회 측정에 걸리는 시간과 코드를 사용한 측정 방법에서 1회 측정에 걸리는 시간을 비교하였다. 이를 바탕으로 코드를 길게 해서 dynamic range를 개선시기는 데에 한계가 있음을 보였고, 길이가 짧으면서 최대 dynamic range를 달성할 수 있는 코드 길이를 제시하였다.

Keywords

References

  1. Dennis Derickson, Fiber Optic Test and Measurement, Prentice Hall, p.434-p.474, 1998
  2. Mitsuhiro Tateda, Tsuneo Horiguchi, Member, IEEE, 'Advances in Optical Time-Domain Reflectometry,' Journal of Lightwave Technology, VOL. 7, No. 8, pp. 1217-1224, August 1989 https://doi.org/10.1109/50.32386
  3. M.P. Gold, A.H. Hartog, 'Long-range singlemode OTDR : Ultimate performance and potential uses,' Proc. 10th Euro. Conf. Opt. Commun, pp. 128-129, 1984
  4. M. Nakazawa, M. Tokuda, Y. Morishige, T. Toratani, '$1.55{\mu}m$ OTDR for single-mode optical fiber longer than 110km,' Electron. Lett. vol. 20, no. 8, pp. 323-325, 1984 https://doi.org/10.1049/el:19840219
  5. M. Nakazawa, M. Tokuda, K. Washino, Y. Ashara, '130km long fault location for single-mode optical fiber using $1.55{\mu}m$ Q-switched Er+++ : Glass laser', Opt. Lett., vol. 9, no. 7, pp. 312-314, 1984 https://doi.org/10.1364/OL.9.000312
  6. Moshe Nazarathy, S.A. Newton, R.P. Giffard, D.S. Moberly, F. Sischka, W.R. Trutna jr., S. Foster, 'Real-Time Long Range Complementary Correlation Optical Time Domain Reflectometer,' Journal of Lightwave Technology, VOL. 7, No. 1, pp. 24-38, January 1989 https://doi.org/10.1109/50.17729
  7. P. Healey, 'Instrumentation principles for optical time domain reflectometry,' J. Phys. E: Scientific Instrum, vol. 19, pp. 334-341, 1986 https://doi.org/10.1088/0022-3735/19/5/002
  8. Michael D.Jones, 'Using Simplex Codes to Improve OTDR Sensitivity,' IEEE Photonics Technology Letters, VOL. 15, No. 7, pp. 822-824, July 1993 https://doi.org/10.1109/68.229819
  9. M. Zoboli, P. Bassi, 'High spatial resolution OTDR attenuation measurements by a correlation technique,' Appl. Opt., vol. 22, no. 23, pp. 3680-3681, 1983 https://doi.org/10.1364/AO.22.003680
  10. P. Healey, 'Optical orthogonal pulse compression codes by hopping,' Electron Lett., vol. 17, no. 25, pp. 970-971, 1981 https://doi.org/10.1049/el:19810677
  11. S.A. Newton, M. Nazarathy, R.P. Giffard, D.S. Moberly, F. Sischka, S. Foster, S. Gross, P. Zorabedian, 'Spread spectrum optical timedomain reflectometer,' Proc. Conf. Lasers and Electroopt. pp. 138-140, 1987
  12. Dr. William A. Gardner, Introduction to Random Processes, McGraw-Hill, p. 46 Second Ed. 1989