DOI QR코드

DOI QR Code

Effects of Combined Micronutrient(Fe, Mn, Cu, Zn, Mo and B) Application on Forage Traits in Pure and Mixed Swards of Orchardgrass and White Clover II. Changes in the yields and concurrence index of forage plants

Orchardgrass 및 White Clover의 단파 및 혼파 재배에서 미량요소(Fe, Mn, Cu, Zn, Mo, B)의 조합시비가 목초의 여러 특성에 미치는 영향 II. 초종별 건물수량 및 식생 경합지수의 변화

  • 정연규 (순천대학교 농업생명과학대학)
  • Published : 2003.12.01

Abstract

This pot experiment was conducted in order to find out the effects of application of combined micronutrients(T$_1$: control. T$_2$; Fe, T$_3$; Fe+Mn, T$_4$; Fe+Mn+Cu, T$_{5}$; Fe+Mn+Cu+Zn, T$_{6}$;Fe+Mn+Cu+Zn+Mo, T$_{7}$; Fe+Mn+Cu+Zn+Mo+B) on forage performance of pure and mixed cultures of orchardgrass and white clover The 2nd part was concerned with the changes in the forage yields and concurrence index. The results obtained are summarized as follows: 1. The effects of combined micronutrient applications on the forage yields were different according to the forage species, whether it was a pure or mixed cultures, and additional fertilization(especially N). The effects of them on the forage productivity and botanical composition were more obvious in white clover, especially in mixed culture, than in orchardgrass. By the significant role of B as a regulator, the yields of both forages were best in the T$_{7}$, respectively. 2. In the pure culture, the high yields of both forages were obtained by the T$_{7}$ and T$_2$, whereas the T$_{6}$ and T$_3$resulted in the low yields. The best yields of both forages were obtained by the T$_{7}$ with relatively optimum ratios among the micronutrients as follows; Fe/Mn/Cu/Zn, Fe/Mo, Mo/B, and ∑ cation/∑anion. It was observed the multiple interaction of Fe${\times}$Mn${\times}$Mo${\times}$B, and the significant role of B as a regulator. The effects of them on white clover were more distinct at no additional fertilization than at the additional fertilization(especially N). 3. In mixed culture, the optimum applications of them resulted in the positive increase of yield and botanical composition of white clover, whereas orchardgrass tended to be inversely except the T$_{7}$.X> 7/. 7/.

Orchardgrass 및 white clover의 단파 및 혼파재배조건에서 미량요소 Fe, Mn, Cu, Zn, Mo 및 B의 조합시비가 목초의 생육, 개화, 수량, 양분 함량 및 식생구성비율 등에 미치는 영향을 구명하였다. 다량료소 양분을 동일 량 시비한 조건에서 7 수준의 미량요소 조합시비는 T$_1$; 대조구, T$_2$; Fe, T$_3$; Fe+Mn, T$_4$; Fe+Mn+Cu, T$_{5}$; Fe+Mn+Cu+Zn, T$_{6}$;Fe+Mn+Cu+Zn+Mo 및 T$_{7}$; Fe+Mn+Cu+Zn+Mo+B로 하였다. 본 II집에서는 조합시비가 목초의 건물수량 및 식생구 성비율/경합지수 특성 등에 미치는 영향을 검토하였다. 1. 조합시비가 수량에 미치는 효과는 초정, 재배방법(단파/혼파), 추파(특히 N) 및 예취 회수에 따라서 차이를 보였다. 조합시비의 효과가 orchardgrass보다 white clover(특히 혼파재배)에서 더 크게 나타났다. 두 목초 공히 T$_{7}$ 에서 가장 높은 수량을 보였으며 붕소(B)가 상대적으로 중요한 조정자 역할을 한 것으로 보였다. 2. 단파재배에서 두 목초의 수량은 T$_{7}$과 T$_2$에서 높았으며 그리고 T$_3$와 T$_{6}$ 에서 낮았다. Fe/Mn/Cu/Zn, Fe/Mo, Mo/B 및 ∑양이온/∑음이온간 비율이 상대적으로 조화된 T$_{7}$에서 수량이 가장 양호하였다. 그리고 Fe${\times}$Mn${\times}$Mo${\times}$B 간다종 교호작용이 있으며 이 때 B의 조정자 역할이 큰 것으로 보였다. white clover에 대한 이러한 효과는 추파 시보다 무추파(특히 N) 시에 더 크게 나타났다. 3. 혼파재배에서는 조화된 조합시비는 white clover의 식생구성비율과 수량제고에 상대적으로 더 긍정적 이였다. 반면에 orchardgrass는 반대적인 경향을 보였고(특히 무추비 시), 단지 T$_{7}$에서만 대조구(T$_1$)와 비슷한 수량을 보였다.다.한 수량을 보였다.

Keywords

References

  1. Bergmann, W. and P. Neubert. 1976. Pflanzendiagnose und Pflanzenanalyse. VEB Gustav Fischer Verlag, Jena
  2. Brown, J.C., R.S. Holmes and L.O. Tiffm. 1959. Hypotheses concerning iron chlorosis. Soil Sci. Soc. Am. Proc. 23,231-234 https://doi.org/10.2136/sssaj1959.03615995002300030023x
  3. Cumbus I.P., D.J. Homsey and L.W. Robinson. 1977. The influence of P, Zn and Mn on absorption and translocation of Fe in watercress. Plant and Soil. 48;651-660 https://doi.org/10.1007/BF00145775
  4. Finck, A. 1969. Pflanzenemaehrung in Stickwoi-ten, 1. Aufl. Verlag Ferdinand Hirt, Kiel
  5. Fischbeck, G., K.U. Heyland and N. Knauer. 1975. Spezieller Pflanzenbau. Verlag Eugen Ulmer, Stuttgart. 225
  6. Gupta U.C. and E.W. Chipman. 1976. Influence of iron and pH on the yield and iron, manganese, zinc, and nitrogen concentration of carrots grown on sphagnum peat soil. Plant and Soil. 44;559-566 https://doi.org/10.1007/BF00011375
  7. Hiatt, A.J. and J.L. Ragland. 1963. Manganese toxicity of burley tobacco. Agron. J. 55;47-49 https://doi.org/10.2134/agronj1963.00021962005500010017x
  8. Jung, G.A. and B.S. Baker. 1973. Forage grasses and legumes orchardgrass. In; Heath and Bames:Forages, 3rd edit. The Iowa State Univ. Press, USA. 285-296
  9. Kannan, S. and S. Ramani. 1978. Studies on Molybdenum absorption and transport in bean and rice. Plant Physiol. 62;179-181 https://doi.org/10.1104/pp.62.2.179
  10. Kirsch, R.K., M.E. Harward and R.G. Petersen. 1960. Interrelationship among iron, manganese, and molybdenum in the growth and nutrition of tomatoes grown in culture solution. Plant and Soil. 12;259-275 https://doi.org/10.1007/BF01343653
  11. Klapp, E. 1971. Wiesen und Weiden. Verlag Paul Parley, Belin und Hamburg. 155. 191
  12. MacKay, D.C., E.W. Chipman and W.M. Langille. 1964. Crop responses to some micronutrients and sodium on sphagnum peat soil. Soil Sci. Soc. Am. Proc. 28;101-104 https://doi.org/10.2136/sssaj1964.03615995002800010043x
  13. Massumi, A. and A. Finck. 1973. Molybdaengehalte einiger Acker- und Gruenlandpflanzen Schleswig-Holsteins in Abhaengigkeit von Bodenreaktion. Z. F. Pflanzenemaehr., Bodenkd. 134;56-65 https://doi.org/10.1002/jpln.19731340108
  14. Matin, A. 1966. Minderung der Molybdaen-Toxiditaet an Pflanzen durch andere NaehrstofFe. Dissertation, D 83, Nr. 200, Techn. Univ. Berli
  15. Moore, D.P., M.E. Harward, D.D. Mason, RJ. Hader, W.L. Lott and W.A. Jackson. 1957. An investigation of some of the relationships between copper, iron, and molybdenum in the growth and accumulations of copper and iron. Soil Sci. Soc. Am. Proc. 21;65-74 https://doi.org/10.2136/sssaj1957.03615995002100010014x
  16. Moraghan, J.T. and T.J. Freeman. 1978. Influenceof FeEDDHA on growth and manganese accumulation in flax. Soil Sci Soc. Am. Proc. 42;455-460 https://doi.org/10.2136/sssaj1978.03615995004200030016x
  17. Nieschlag, F. 1966. Versuche ueber den Einfluss einiger Spurenelemente auf die Leistung von Milchviehweiden. Landw. Forschung. 19;191-195
  18. Osullivan, M. 1969. Iron metabolism of grasses. I. Effect of iron supply on some inorganic and organic constituents. Plant and Soil. 31;451-462 https://doi.org/10.1007/BF01373816
  19. Riekels, J.W. and J.C. Lingle 1966. Iron uptakeand translocation by tomato plants as influencedby root temperature apd manganese nutrition. Plant Physiol. 41;1095-1101 https://doi.org/10.1104/pp.41.7.1095
  20. Shingh, B.R. and K. Steenberg. 1975. Plant response to micronutnents. III. Interaction between manganese and zinc in maize and barley plants. Plant and Soil. 40;655-667 https://doi.org/10.1007/BF00010521
  21. Sommers, l.I. and J.W. Shive. 1942. The ironmanganese relation in the plant metabolism. Plant Physiol. 17;582-602 https://doi.org/10.1104/pp.17.4.582