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ABSTRACT

The motion of each satellite in a tethered satellite system is non-Keplerian in the
Earth’s gravitational field. In this paper, the tether perturbation force is formulated
and compared with the perturbation force due to the Earth’s oblateness. Also, the cen-
ter of mass motion of the tethered satellite system is analyzed. The tether perturbing
force on the one of satellites in a tethered satellite system is much bigger than the
Earth’s oblateness perturbation. The two-body motion approximation of the center of
mass is acceptable to describe the motion of the system, when the libration is small.
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1. INTRODUCTION

Since the concept of tethered satellite systems was proposed, numerous types of tethered satellite
systems and their dynamic behaviors have been investigated. Dynamics and control problems such
as deployment and retrieval of tethers (Rupp 1978, Keshmiri & Misra 1996, Pradhan, Modi, &
Misra 1995), elastic oscillation of tethers (Yu 1996, Luongo & Vestroni 1994, Pignataro, Luongo, &
Pasca 1991), and electrodynamics of tethers (Williamson, Banks, & Raitt 1987, Martinez-Sanchez
& Hastings 1987, Bonifazi et al. 1987) have been studied by using various tether models. Although
the motion of a tethered satellite system is coupled orbital and attitude motion, the attitude dynamics
and control of tethered satellite have generally been treated as decoupled from the dynamics of the
center of mass motion around the Earth. The decoupling of attitude motion from orbital motion is
usually acceptable because the effects of dynamic coupling of attitude motion with orbital motion
(translational motion) are usually not very significant (Modi & Misra 1977, Bainum & Evans 1976).
However, when the orbital motion of tethered satellite systems is considered, the dynamic coupling
becomes the principal interest (Moran 1961, Yu 1964).

Although, the analytical investigations of the orbital motion of tethered satellite systems have
been numerous (Beletskii & Levin1985, De Matteis 1992, Warnock & Cochran 1993), there are
still some characteristics of tethered satellite systems that may cause significant problems. The
main reason for academic and practical interest in tethered satellite systems is that their dynamical
characteristics are different from those of conventional satellites. If the geometry of a satellite system
is not symmetric, Or its mass is not uniformly distributed, the nominal orbital motion is no longer
Keplerian. Its relatively large geometric size and unique configuration cause the motion of a tethered
satellite system (TSS) to differ from that of other space objects in the Earth’s orbit (Cochran et al.
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Figure 1. Two-body Tethered Satellite System.

1996, Cho, Cochran, & Cicci 1998). These exclusive characteristics may be treated as a new source
of perturbation of a nominal Keplerian orbit. Tethered satellites and their motion may be considered
as the source of perturbation on the orbital motion of TSS.

In this paper, a model of a two-satellite tethered system with point mass satellites connected
by a massless rod tether is described and the tether-perturbing force on the satellites in the TSS is
analyzed.

2. TETHERED SATELLITE SYSTEM MODEL

The coordinate systems and position vectors used to describe the motion of a tethered satellite
system are depicted in Figure 1. For our purpose, we may take the origin of the reference frame E,y,
as the center of the Earth. We may also model the Earth as a point mass. In Figure 1, the plane {7 is
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the osculating plane in which m is moving at some point of time. The orientation of the osculating
plane is defined by Q and ¢, the longitude of the ascending node and inclination, respectively. The
vector r defines the position of the perturbed satellite, m, with respect to E and the position of the
other satellite, m,, with respect to E is defined by r,. The equations of motion for the satellites m
and m,, in a Newtonian gravity field are

. F
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where 4 is the gravitational constant in the Earth’s gravitational field and the forces of the satellite
on the other satellite are neglected. On the right-hand-sides of the Egs. (1) and (2), F't is the force
on the satellite m due to the tether. The force Ft is a new disturbing force, which must be introduced
in the equations of a tethered satellite system. In Figure 1, the vector p is the relative position vector
of my, with respect to m. By using Eqgs. (1) and (2) we may then write

. M
p_Ag_ mmpFTa (3)

where M = m + my, and Ag, the effect of gravity difference in the acceleration at m and m,, is
r r
Ag=—p [é—;g]- @

Figure 2 shows the angles 8, and 6;. §; and 65 are in-plane and out-of-plane motion of the
body m, with respect to m, respectively. In Figure 2, unit vector e;23 represents relative coordinate
system with respect to the rotating frame unit vector u;23. From Figures 1 and 2, and Egs. (1)-
(3), the motion of m in u;23 and the relative motion of the m,;, in e;23 coordinate system may be
expressed, respectively, as

f+5\xr+2)\xi-+/\x(/\xr)=_”%+F_T (5)
r m
ﬁ+dJXp+2pr'+wX(pr):Ag—M‘ (6)
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In Eq. (5), A is the angular velocity of the u;93 coordinate system. In Eq. (6), w is the angular
velocity of the ejo3 coordinate system. From the vector differential Eq. (5), the following three
scalar equations for the motion of the body m are obtained (Cochran et al. 1996, Cho, Cochran, &
Cicci 1998):
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Figure 2. Relative Motion of my, w.r.t. m.

The kinematics equations that relate the component of X are

Q = \; sinf/ sins (10)
i= A cosé (11)
6 = X3 — ), sinB cosi/ sini. (12)

Note that, since we have described the motion of the satellite m in the osculating plane £7, both
rand f = ré; + A X r must in that plane. Hence, Ay = A2 = 0. Then, by using Eq. (9) we may

write A; as P
1
A= ——ug - —. (13)
A3r m

Similarly, the equations of motion for the perturbing satellite m,, can be written as

M
i = (w2 2 -A F. 14
f=(wy+wilpte-Ag+ T (14)
. 1 .
wy = ;(—20.)30 —wiap +es - Ag) (15)

1
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6 = wy + A; sinfs an
65 = (ws — A1 sinfycosf3)/ cosy — As. (18)

The gravity-gradient, Ag is in Eqs. (14)-(16) can be obtained approximately by using a series
expansion. Then the expression for Ag is,

3cos? 6, cos? s ~1
Ag = T%p —3cosfsy cosf3 sinfs (19)
3cosf, cos? @5 sinbs

Equations (7)-(19) govern the motion of m (r, 2, i, and §) and motion of m, (62 and 63) com-
pletely.

3. TETHER - PERTURBED ORBITAL MOTION

3.1 Tether Perturbing Force on Satellite m
In Eq. (1), the disturbing force, Fr perturb the Keplerian motion of the satellite 7. The tether
perturbing force vector, F'r, in e;23 coordinate system may be expressed as

Fr
Fr = 0 (20)
0

If the tether is modeled as being inextensible, then the tether force on the satellite m may be
obtained from the requirement that p= 0 in Eq. (14). Thus, we find that

mm,

Fr=—=

p{(w}+wd) + 7%(3 cos” 6 cos? 0 — 1)} @1)

Since the tether is inextensible, we may use Eq. (21) when the right-hand side of Eq. (21) is
greater than zero and F'r = 0 otherwise. Perturbations due to the tether and tethered mass may be
analyzed by considering the direction of the perturbation. A vector form of the tether perturbation
force in the u;23 coordinate system obtained from Eq. (20) is '

Fr = Fr cosfysinfs

—Fr sinfy

(22)

Fr cosfqcosfs }

Note that the unit vectors u; and u» of the rotating coordinate system, u; 23, form the osculating
orbital plane of satellite 7, and the vector ug represents the out-of-plane direction of the osculating
orbital plane. From Eq. (22), it is clear that no out-of-plane perturbation due to the tether occurs
when 6; = 0. If both 2 and 85 are zero, only a radial component of the perturbation exists. In the
latter case, the magnitude of the perturbing force in the radial direction is

. 2
Fp =0, [02 + r—’;] 23)
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3.2 Effect of the Earth’s Oblateness on TSS
The components of the accelerations due to the Earth’s oblateness of satellite m in u;,3 coordi-
nate system shown in Figure 1 may be written as (Roy 1982)

3 _R? 3. .
Ayl = —-2-/11.]2-;1— {1 -5 sini(1 — cos 29)} 24)
2
Quz = —-;—;;Jz%-(sinz i sin 26) (25)
2
Gu3 = —3 oty r—:(sin icosicosf). (26)

where R, is the Earth’s radius. From Eq. (24), an estimate of the maximum magnitude of a5 in
radial direction may be approximated as

3
J2mas N Jz;’;. @7

From Eq. (21), an estimate of the maximum magnitude of tether perturbing acceleration in radial
direction may be obtained approximately as

m, 2
ATmaz =~ ﬁp:’% (28)

Also we can write the ratio of ajamaz t0 Tmag, €. @J2maz/ATmaz » from Egs. (27) and (28)

* 30, M
Rp=222T (29)
2 mpp
Equation (29) shows that the magnitude of the tether perturbing acceleration is much larger than
the Earth’s oblateness effect, since r/p is generally very large.

3.3 Tether Perturbed Motion of the Center of Mass

Equations of motion for the center of mass may be derived by using basic principles and referring
to Figure 1. If the tether is modeled as a massless rod then by using geometry and the definition of
the center of mass, the position vectors of m and m, may be expressed as

m

r= ——ﬁ’pﬂc (30)
m

Tp = 7P+ T (BD

respectively. In Egs. (30) and (31), r. is the position vector of the center of mass. By differentiating
Egs. (30) and (31) with respect to time twice and adding, we can obtain

fczf;fu(@_ﬂ)é (32)

M M/2
By using p = £, —T and Egs. (1) and (2), we can rewrite Eq. (32) as

. _ pf_r rp
e = __M (m;,; + mpg) (33)
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Equation (33) is the equation of motion of the center of mass. However, it still contains r and rp.
The vectors r and r, may be replaced by using Eqs. (30) and (31) and 1/ r;’; and 1/73 rewritten as
series expansion in p and r.. We may then write the equation of motion for the center of mass of

TSS as
7 3mmy, [ p 21
'fC:——3rc+__" (_) =Tt (34)
T

In Eq. (34), the first term in the right-hand side is the same gravitational force as in the two-body
problem and the second term is a perturbation force due to the tether and end masses. It is noticed
that this perturbation term in Eq. (34) is, generally, very small since p/r. is small for any tethered
satellite of current interest.

4. CONCLUSION

Generally, orbital motion and attitude motion of a satellite in the Earth’s orbit are not strongly
coupled and can be treated separately for purposes of analysis. However, relatively large geometrical
scale of the configuration of a tethered satellite system makes it less reasonable to consider the mo-
tion of the center of mass (translational motion) and the motion about it (attitude motion) as separate
problems. The motion of each satellite in a TSS is non-Keplerian in the Earth’s gravitational field
because of the tether perturbing forces. The tether perturbing force is formulated and it is noticed
that the tether perturbing force on the one of the satellite in TSS is much bigger than the Earth’s
oblateness perturbation. This characteristic may cause problems to those who are detecting, identi-
fying and tracking space objects with the conventional orbit determination method. The analysis of
the motion of the center of mass of TSS shows that the two-body motion approximation by using the
center of mass motion is feasible when the libration is small.
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