Characterization of Antimicrobial Polymeric Films for Food Packaging Applications

식품 포장용 항균 기능성 고분자 필름의 특성 및 평가

  • Published : 2003.12.01

Abstract

There have been a lot of research efforts on development of active food packaging structures and materials in the form of plastic films and containers, along with investigating novel polymers and bioactive compounds for packaging purpose, in order to improve storage stability and safety of foods during distribution and sale. Recently, great interests focus on antimicrobial package films, as an active packaging system, made from synthetic plastic polymer% and natural biopolymers containing various antimicrobial substances for food packaging applications. In this active system, substances are slowly released onto the food surface. However, antimicrobial activity as well as physical properties of the films can be significantly influenced by several factors such as polymer matrix, antimicrobial compounds, and interactions between polymers and compounds. Thus, this study reviews present status of antimicrobial food packaging films in overall performance aspects including types of polymers and active substances, test for antimicrobial activity, and changes in mechanical and antimicrobial properties by preparation method.

식품의 저장성 및 안전성 향상을 목적으로 필름이나 용기형태의 항균 기능성 포장재를 개발하고자 하는 노력이 지속되고 있으며, 아울러 새로운 고분자 및 항균 소재 탐색에 대한 연구도 활발히 진행되고 있다. 이와 관련하여 기존의 합성 고분자뿐만 아니라 생고분자에 각종 항균제를 첨가 또는 혼입하여 제조한 식품 포장용 항균성 필름이 최근 들어 주목받고 있는데, 이러한 항균성 필름은 담체로 사용된 고분자는 물론 항균제의 종류, 이들의 상호작용에 따라 항균효과 및 지속기간, 필름의 물성 등이 현저하게 달라진다. 따라서 보다 효과적인 식품 포장용 항균 기능성 필름의 제조기술 개발을 위해 발표된 문헌 자료를 토대로 항균필름 제조에 사용된 고분자 소재와 항균제의 종류, 항균활성 평가방법, 제조방법에 따른 항균효과 및 필름의 물성 변화 등 항균필름의 종합적인 항균성 평가 결과를 중심으로 정리하였다.

Keywords

References

  1. Vermeiren, L., Devlieghere, F., Beest, M., Kruijf, N. and Debevere, J. (1999) Developments in the active packaging of foods. Trends Food Sci. Technol., 10, 77-86 https://doi.org/10.1016/S0924-2244(99)00032-1
  2. Quattara, B., Simard, R.E., Piette, G., Begin, A. and Holley, R.A. (2000) Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Inter. J. Food Microbiol., 62, 139-148 https://doi.org/10.1016/S0168-1605(00)00407-4
  3. Quattara, B., Simard, R.E., Piette, G., Begin, A. and Holley, R.A. (2000) Diffusion of acetic and propionic acids from chitosan-based antimicrobial packaging films. J. Food Sci., 65, 768-773 https://doi.org/10.1111/j.1365-2621.2000.tb13584.x
  4. Chen, M.C., Yen, G.H. and Chiang, B.J. (1996) Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative. J. Food Process. Preserv., 20, 379-390 https://doi.org/10.1111/j.1745-4549.1996.tb00754.x
  5. Ozdemir, M. and Floros, J.D. (2001) Analysis and modeling of potassium sorbate diffusion through edible whey protein films. J. Food Engin., 47, 149-155 https://doi.org/10.1016/S0260-8774(00)00113-8
  6. Natrajan, N. and Sheldon, B.W. (2000) Efficacy of nisin-coated polymer films to inactivate Salmonella Typhimurium on fresh broiler skin. J. Food Protec., 63, 1189-1196 https://doi.org/10.4315/0362-028X-63.9.1189
  7. Natrajan, N. and Sheldon, B.W. (2000) Inhibition of Salmonella on poultry skin using protein- and polysaccharide-based films containing a nisin formulation, J. Food Protec., 63, 1268-1272 https://doi.org/10.4315/0362-028X-63.9.1268
  8. Chung, D., Papadakis, S.E. and Yam, K.L. (2003) Evaluation of a polymer coating containing triclosan as the antimicrobial layer for packaging materials. Inter. J. Food Sci. Technol., 38, 165-169 https://doi.org/10.1046/j.1365-2621.2003.00657.x
  9. Han, J.H. and Floros, J.D. (1997) Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. J. Plastic Film Sheeting, 13, 287-298 https://doi.org/10.1177/875608799701300405
  10. Devlieghere, F., Vermeiren, L., Jacobs, M. and Debevere, J. (2000) The effectiveness of hexamethylene tetramine-incorporated plastic for the active packaging of foods. Packaging Technol. Sci., 13, 117-121 https://doi.org/10.1002/1099-1522(200005)13:3<117::AID-PTS500>3.0.CO;2-B
  11. Amalia, G., Scannell, M., Hill, C., Ross, R.P. Marx, S., Hartmeier, W. and Arendt, E.K. (2000) Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin. Inter. J. Food Microbiol., 60, 241-249 https://doi.org/10.1016/S0168-1605(00)00314-7
  12. Paik, J.S., Dhanasekharan, M. and Kelly, M.J. (1998) Antimicrobial activity of UV-irradiated nylon film for packaging applications. Packaging Technol. Sci., 11, 179-187 https://doi.org/10.1002/(SICI)1099-1522(199807/08)11:4<179::AID-PTS429>3.0.CO;2-J
  13. Weng, Y.M., Chen, M.J. and Chen, W. (1997) Benzoyl chloride modified ionomer films as antimicrobial food packaging materials. Inter. J. Food Sci. Technol., 32, 229-234 https://doi.org/10.1046/j.1365-2621.1997.00397.x
  14. Darmadji, P. and Izumimoto, M. (1994) Effect of chitosan in meat preservation. Meat Sci., 38, 243-254 https://doi.org/10.1016/0309-1740(94)90114-7
  15. Fang, S.W., Li, C.F. and Shih, D.Y.C. (1994) Antifungal activity of chitosan and its preservative effect on low-sugar candied Kumquat. J. Food Protec., 57, 136-140 https://doi.org/10.4315/0362-028X-57.2.136
  16. Roller, S. and Covill, N. (1999) The antifungal properties of chitosan in laboratory media and apple juice. Inter J. Food Microbiol., 47, 67-77 https://doi.org/10.1016/S0168-1605(99)00006-9
  17. Helander, I.M., Nurmiaho-Lassila, E.L., Ahvenainen, R., Rhoades, J. and Roller, S. (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Inter. J. Food Microbiol., 71, 235-244 https://doi.org/10.1016/S0168-1605(01)00609-2
  18. Siragusa, G.R. and Dickson, J.S. (1992) Inhibition of Listeria monocytogenes on beef tissue by application of organic acids immobilized in calcium alginate gel. J. Food Sci., 57, 293-296 https://doi.org/10.1111/j.1365-2621.1992.tb05479.x
  19. Baron, J.K. and Sumner, S.S. (1993) Antimicrobial containing edible films as an inhibitory system to control microbial growth on meat products. J. Food Protec., 56, 916-921
  20. Weng, Y.M. and Chen, M.J. (1997) Sorbic anhydride as antimycotic additive in polyethylene food packaging films. Lebensm. Wiss. Technol., 30, 485-487 https://doi.org/10.1006/fstl.1996.0214
  21. Cha, D.S. and Chinnan, M.S. (2003) Emerging role of nisin in food and packaging systems. Food Sci. Biotechnol., 12, 206-212
  22. Davies, E.A., Milne, H.E., Bevis, C.F., Potter, R.W., Harris, J.M., Williams, G.C., Thomas, L.V. and Delves-broughton, J. (1999) Effective use of nisin to control lactic acid bacterial spoilage in vacuum-packed bologna-type sausage. J. Food Protec., 62, 1004-1010 https://doi.org/10.4315/0362-028X-62.9.1004
  23. Hoffman, K.L., Han, I.Y. and Dawson, P.L. (2001) Antimicrobial effects of corn zein films impregnated with nisin, lauric acid, and EDTA. J. Food Protec., 64, 885-889 https://doi.org/10.4315/0362-028X-64.6.885
  24. Padgett, T., Han, I.Y. and Dawson, P.L. (1998) Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. J. Food Protec., 61, 1330-1335 https://doi.org/10.4315/0362-028X-61.10.1330
  25. Padgett, T., Han, I.Y. and Dawson, P.L. (2000) Effect of lauric acid addition on their antimicrobial efficacy and water permeability of corn zein films containing nisin, J. Food Process. Preserv., 24, 423-432 https://doi.org/10.1111/j.1745-4549.2000.tb00429.x
  26. Ming, X., Weber, G.H., Ayres, J.W. and Sandine, W.E. (1997) Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats. J. Food Sci., 62, 413-415 https://doi.org/10.1111/j.1365-2621.1997.tb04015.x
  27. Moir, C.J. and Eyles, M.J. (1992) Inhibition, injury, and inactivation of four psychrotrophic foodborne bacteria by the preservatives methyl $\rho$-hydroxybenzoate and potassium sorbate. J. Food Protec., 55, 360-366 https://doi.org/10.4315/0362-028X-55.5.360
  28. Chung, D., Chikindas, M.L. and Yam, K.L. (2001) Inhibition of Saccharomyces cerevisiae by slow release of propyl paraben from a polymer coating. J Food Protec., 64, 1420-1424 https://doi.org/10.4315/0362-028X-64.9.1420
  29. Thompson, D.P. (1994) Minimum inhibitory concentration of esters of p-hydroxybenzoic acid (paraben) combinations against toxigenic fungi. J. Food Protec., 57, 133-135
  30. Kalyon, B.D. and Olgun, U. 2001. Antimicrobial efficacy of triclosan-incorporated polymers. Am. J. Infection Control, 29, 124-125 https://doi.org/10.1067/mic.2001.113229
  31. Cutter, C.N. 1999. The effectiveness of triclosan-incorporated plastic against bacteria on beef surfaces. J. Food Protec., 62, 474-479 https://doi.org/10.4315/0362-028X-62.5.474
  32. Weng, Y.M. and Hotchkiss, J.H. 1992. Inhibition of surface molds on cheese by polyethylene film containing the antimycotic imazalil. J. Food Protec., 55, 367-369 https://doi.org/10.4315/0362-028X-55.5.367
  33. Nielsen, P.V. and Rios, R. (2000) Inhibition of fungal growth on bread by volatile compounds from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. Inter. J. Food Microbiol., 60, 219-229 https://doi.org/10.1016/S0168-1605(00)00343-3
  34. Field, C.E., Povarnik, L.F., Barnett, S.M. and Rand, Jr.A.G. (1986) Utilization of glucose oxidase for extending the shelf-life of fish. J. Food Sci., 51, 66-70 https://doi.org/10.1111/j.1365-2621.1986.tb10837.x
  35. Garcia-Garibay, M., Luna-Salazar, A. and Casas, L.T. (1995) Antimicrobial effect of the lactoperoxidase system in milk activated by immobilized enzymes. Food Biotechnol., 9, 157-166 https://doi.org/10.1080/08905439509549890
  36. Appendini, P. and Hotchkiss, J.H. (2000) Antimicrobial activity of a 14-residue synthetic peptide against foodborne microorganisms. J. Food Protec., 63, 889-893 https://doi.org/10.4315/0362-028X-63.7.889
  37. Davidson, P.M. and Parish, M.E. (1989) Methods for testing the efficacy of food antimicrobials. Food Technol., 43(1), 148-155
  38. Weng, Y.M., M.J. Chen and W. Chen. 1999. Antimicrobial food packaging materials from poly(ethylene-co-methacrylic acid). Lebensm. Wiss. Technol. 32(4): 191-195 https://doi.org/10.1006/fstl.1998.0519
  39. Appendini, P. and Hotchkiss, J.H. (2002) Review of antimicrobial food packaging. Innovative Food Sci. Emerging Technol., 3, 113-126 https://doi.org/10.1016/S1466-8564(02)00012-7
  40. Quattara, B., Giroux, M, Yefsah, R., Smoragiewicz, W., Saucier, L., Borsa, J. and Lacroix, M. (2002) Microbiological and biochemical characteristics of ground beef as affected by gamma irradiation, food additives and edible coating film. Radiation Phys. Chem., 63, 299-304 https://doi.org/10.1016/S0969-806X(01)00516-3
  41. Hong, S.l, Park, J.D. and Kim, D.M. (2000) Antimicrobial and physical properties of food packaging films incorporated with some natural compounds. Food Sci. Biotechnol., 9, 38-42
  42. An, D.S., Kim, Y.M., Lee, S.B., Paik, H.D. and Lee, D.S. (2000) Antimicrobial low density polyethylene film coated with bacteriocins in binder medium. Food Sci. Biotechnol., 9, 14-20
  43. Chung, D., Papadakis, S.E. and Yam, K.L. (2001) Release of propyl paraben from a polymer coating into water and food simulating solvents for antimicrobial packaging applications. J. Food Process. Preserv., 25, 71-87 https://doi.org/10.1111/j.1745-4549.2001.tb00444.x
  44. Kim, Y.M., An, D.S., Park, H.J., Park, J.M. and Lee, D.S. (2002) Properties of nisin-incorporated polymer coatings as antimicrobial packaging materials. Packaging Technol. Sci., 15, 247-254 https://doi.org/10.1002/pts.594
  45. Kim, Y.M., Paik, H.D. and Lee, D.S. (2002) Shelf-life characteristics of fresh oysters and ground beef as affected by bacteriocin-coated plastic packaging film, J. Sci. Food Agric., 82, 998-1002 https://doi.org/10.1002/jsfa.1125
  46. Hong, S.l. and Krochta, J.M. (2003) Oxygen barrier properties of whey protein isolate coatings on polypropylene films. J. Food Sci., 68, 224-228 https://doi.org/10.1111/j.1365-2621.2003.tb14143.x
  47. Begin, A. and Van Calsteren, M.R. (1999) Antimicrobial films produced from chitosan. Inter. J. Biol. Macromol., 26, 63-67 https://doi.org/10.1016/S0141-8130(99)00064-1
  48. Ko, S., Janes, M.E., Hettiarachchy, N.S. and Johnson, M.G. (2001) Physical and chemical properties of edible films containing nisin and their action against Listeria monocytogenes. J. Food Sci., 66, 1006-1011 https://doi.org/10.1111/j.1365-2621.2001.tb08226.x
  49. Cagri, A., Ustunol, Z. and Ryser, E.T. (2001) Antimicrobial, mechanical, and moisture barrier properties of low pH whey protein-based edible films containing p-aminobenzoic or sorbic acids. J. Food Sci., 66, 865-870 https://doi.org/10.1111/j.1365-2621.2001.tb15188.x
  50. Han, J.H. and Floras, J.D. (1998) Potassium sorbate diffusivity in America processed and Mozzarella cheeses. J. Food Sci., 63, 435-437 https://doi.org/10.1111/j.1365-2621.1998.tb15758.x
  51. Cha, D.S., Choi, J.H., Chinnan, M.S. and Park, H.J. (2002) Antimicrobial films based on Na-alginate and k-carrageenan. Lebensm. Wiss. Technol., 35, 715-719 https://doi.org/10.1006/fstl.2002.0928
  52. Siragusa, G.R., Cutter, C.N. and Willett, J.L. (1999) Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiol., 16, 229-235 https://doi.org/10.1006/fmic.1998.0239