References
- Vermeiren, L., Devlieghere, F., Beest, M., Kruijf, N. and Debevere, J. (1999) Developments in the active packaging of foods. Trends Food Sci. Technol., 10, 77-86 https://doi.org/10.1016/S0924-2244(99)00032-1
- Quattara, B., Simard, R.E., Piette, G., Begin, A. and Holley, R.A. (2000) Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Inter. J. Food Microbiol., 62, 139-148 https://doi.org/10.1016/S0168-1605(00)00407-4
- Quattara, B., Simard, R.E., Piette, G., Begin, A. and Holley, R.A. (2000) Diffusion of acetic and propionic acids from chitosan-based antimicrobial packaging films. J. Food Sci., 65, 768-773 https://doi.org/10.1111/j.1365-2621.2000.tb13584.x
- Chen, M.C., Yen, G.H. and Chiang, B.J. (1996) Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative. J. Food Process. Preserv., 20, 379-390 https://doi.org/10.1111/j.1745-4549.1996.tb00754.x
- Ozdemir, M. and Floros, J.D. (2001) Analysis and modeling of potassium sorbate diffusion through edible whey protein films. J. Food Engin., 47, 149-155 https://doi.org/10.1016/S0260-8774(00)00113-8
- Natrajan, N. and Sheldon, B.W. (2000) Efficacy of nisin-coated polymer films to inactivate Salmonella Typhimurium on fresh broiler skin. J. Food Protec., 63, 1189-1196 https://doi.org/10.4315/0362-028X-63.9.1189
- Natrajan, N. and Sheldon, B.W. (2000) Inhibition of Salmonella on poultry skin using protein- and polysaccharide-based films containing a nisin formulation, J. Food Protec., 63, 1268-1272 https://doi.org/10.4315/0362-028X-63.9.1268
- Chung, D., Papadakis, S.E. and Yam, K.L. (2003) Evaluation of a polymer coating containing triclosan as the antimicrobial layer for packaging materials. Inter. J. Food Sci. Technol., 38, 165-169 https://doi.org/10.1046/j.1365-2621.2003.00657.x
- Han, J.H. and Floros, J.D. (1997) Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. J. Plastic Film Sheeting, 13, 287-298 https://doi.org/10.1177/875608799701300405
- Devlieghere, F., Vermeiren, L., Jacobs, M. and Debevere, J. (2000) The effectiveness of hexamethylene tetramine-incorporated plastic for the active packaging of foods. Packaging Technol. Sci., 13, 117-121 https://doi.org/10.1002/1099-1522(200005)13:3<117::AID-PTS500>3.0.CO;2-B
- Amalia, G., Scannell, M., Hill, C., Ross, R.P. Marx, S., Hartmeier, W. and Arendt, E.K. (2000) Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin. Inter. J. Food Microbiol., 60, 241-249 https://doi.org/10.1016/S0168-1605(00)00314-7
- Paik, J.S., Dhanasekharan, M. and Kelly, M.J. (1998) Antimicrobial activity of UV-irradiated nylon film for packaging applications. Packaging Technol. Sci., 11, 179-187 https://doi.org/10.1002/(SICI)1099-1522(199807/08)11:4<179::AID-PTS429>3.0.CO;2-J
- Weng, Y.M., Chen, M.J. and Chen, W. (1997) Benzoyl chloride modified ionomer films as antimicrobial food packaging materials. Inter. J. Food Sci. Technol., 32, 229-234 https://doi.org/10.1046/j.1365-2621.1997.00397.x
- Darmadji, P. and Izumimoto, M. (1994) Effect of chitosan in meat preservation. Meat Sci., 38, 243-254 https://doi.org/10.1016/0309-1740(94)90114-7
- Fang, S.W., Li, C.F. and Shih, D.Y.C. (1994) Antifungal activity of chitosan and its preservative effect on low-sugar candied Kumquat. J. Food Protec., 57, 136-140 https://doi.org/10.4315/0362-028X-57.2.136
- Roller, S. and Covill, N. (1999) The antifungal properties of chitosan in laboratory media and apple juice. Inter J. Food Microbiol., 47, 67-77 https://doi.org/10.1016/S0168-1605(99)00006-9
- Helander, I.M., Nurmiaho-Lassila, E.L., Ahvenainen, R., Rhoades, J. and Roller, S. (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Inter. J. Food Microbiol., 71, 235-244 https://doi.org/10.1016/S0168-1605(01)00609-2
- Siragusa, G.R. and Dickson, J.S. (1992) Inhibition of Listeria monocytogenes on beef tissue by application of organic acids immobilized in calcium alginate gel. J. Food Sci., 57, 293-296 https://doi.org/10.1111/j.1365-2621.1992.tb05479.x
- Baron, J.K. and Sumner, S.S. (1993) Antimicrobial containing edible films as an inhibitory system to control microbial growth on meat products. J. Food Protec., 56, 916-921
- Weng, Y.M. and Chen, M.J. (1997) Sorbic anhydride as antimycotic additive in polyethylene food packaging films. Lebensm. Wiss. Technol., 30, 485-487 https://doi.org/10.1006/fstl.1996.0214
- Cha, D.S. and Chinnan, M.S. (2003) Emerging role of nisin in food and packaging systems. Food Sci. Biotechnol., 12, 206-212
- Davies, E.A., Milne, H.E., Bevis, C.F., Potter, R.W., Harris, J.M., Williams, G.C., Thomas, L.V. and Delves-broughton, J. (1999) Effective use of nisin to control lactic acid bacterial spoilage in vacuum-packed bologna-type sausage. J. Food Protec., 62, 1004-1010 https://doi.org/10.4315/0362-028X-62.9.1004
- Hoffman, K.L., Han, I.Y. and Dawson, P.L. (2001) Antimicrobial effects of corn zein films impregnated with nisin, lauric acid, and EDTA. J. Food Protec., 64, 885-889 https://doi.org/10.4315/0362-028X-64.6.885
- Padgett, T., Han, I.Y. and Dawson, P.L. (1998) Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. J. Food Protec., 61, 1330-1335 https://doi.org/10.4315/0362-028X-61.10.1330
- Padgett, T., Han, I.Y. and Dawson, P.L. (2000) Effect of lauric acid addition on their antimicrobial efficacy and water permeability of corn zein films containing nisin, J. Food Process. Preserv., 24, 423-432 https://doi.org/10.1111/j.1745-4549.2000.tb00429.x
- Ming, X., Weber, G.H., Ayres, J.W. and Sandine, W.E. (1997) Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats. J. Food Sci., 62, 413-415 https://doi.org/10.1111/j.1365-2621.1997.tb04015.x
-
Moir, C.J. and Eyles, M.J. (1992) Inhibition, injury, and inactivation of four psychrotrophic foodborne bacteria by the preservatives methyl
$\rho$ -hydroxybenzoate and potassium sorbate. J. Food Protec., 55, 360-366 https://doi.org/10.4315/0362-028X-55.5.360 - Chung, D., Chikindas, M.L. and Yam, K.L. (2001) Inhibition of Saccharomyces cerevisiae by slow release of propyl paraben from a polymer coating. J Food Protec., 64, 1420-1424 https://doi.org/10.4315/0362-028X-64.9.1420
- Thompson, D.P. (1994) Minimum inhibitory concentration of esters of p-hydroxybenzoic acid (paraben) combinations against toxigenic fungi. J. Food Protec., 57, 133-135
- Kalyon, B.D. and Olgun, U. 2001. Antimicrobial efficacy of triclosan-incorporated polymers. Am. J. Infection Control, 29, 124-125 https://doi.org/10.1067/mic.2001.113229
- Cutter, C.N. 1999. The effectiveness of triclosan-incorporated plastic against bacteria on beef surfaces. J. Food Protec., 62, 474-479 https://doi.org/10.4315/0362-028X-62.5.474
- Weng, Y.M. and Hotchkiss, J.H. 1992. Inhibition of surface molds on cheese by polyethylene film containing the antimycotic imazalil. J. Food Protec., 55, 367-369 https://doi.org/10.4315/0362-028X-55.5.367
- Nielsen, P.V. and Rios, R. (2000) Inhibition of fungal growth on bread by volatile compounds from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. Inter. J. Food Microbiol., 60, 219-229 https://doi.org/10.1016/S0168-1605(00)00343-3
- Field, C.E., Povarnik, L.F., Barnett, S.M. and Rand, Jr.A.G. (1986) Utilization of glucose oxidase for extending the shelf-life of fish. J. Food Sci., 51, 66-70 https://doi.org/10.1111/j.1365-2621.1986.tb10837.x
- Garcia-Garibay, M., Luna-Salazar, A. and Casas, L.T. (1995) Antimicrobial effect of the lactoperoxidase system in milk activated by immobilized enzymes. Food Biotechnol., 9, 157-166 https://doi.org/10.1080/08905439509549890
- Appendini, P. and Hotchkiss, J.H. (2000) Antimicrobial activity of a 14-residue synthetic peptide against foodborne microorganisms. J. Food Protec., 63, 889-893 https://doi.org/10.4315/0362-028X-63.7.889
- Davidson, P.M. and Parish, M.E. (1989) Methods for testing the efficacy of food antimicrobials. Food Technol., 43(1), 148-155
- Weng, Y.M., M.J. Chen and W. Chen. 1999. Antimicrobial food packaging materials from poly(ethylene-co-methacrylic acid). Lebensm. Wiss. Technol. 32(4): 191-195 https://doi.org/10.1006/fstl.1998.0519
- Appendini, P. and Hotchkiss, J.H. (2002) Review of antimicrobial food packaging. Innovative Food Sci. Emerging Technol., 3, 113-126 https://doi.org/10.1016/S1466-8564(02)00012-7
- Quattara, B., Giroux, M, Yefsah, R., Smoragiewicz, W., Saucier, L., Borsa, J. and Lacroix, M. (2002) Microbiological and biochemical characteristics of ground beef as affected by gamma irradiation, food additives and edible coating film. Radiation Phys. Chem., 63, 299-304 https://doi.org/10.1016/S0969-806X(01)00516-3
- Hong, S.l, Park, J.D. and Kim, D.M. (2000) Antimicrobial and physical properties of food packaging films incorporated with some natural compounds. Food Sci. Biotechnol., 9, 38-42
- An, D.S., Kim, Y.M., Lee, S.B., Paik, H.D. and Lee, D.S. (2000) Antimicrobial low density polyethylene film coated with bacteriocins in binder medium. Food Sci. Biotechnol., 9, 14-20
- Chung, D., Papadakis, S.E. and Yam, K.L. (2001) Release of propyl paraben from a polymer coating into water and food simulating solvents for antimicrobial packaging applications. J. Food Process. Preserv., 25, 71-87 https://doi.org/10.1111/j.1745-4549.2001.tb00444.x
- Kim, Y.M., An, D.S., Park, H.J., Park, J.M. and Lee, D.S. (2002) Properties of nisin-incorporated polymer coatings as antimicrobial packaging materials. Packaging Technol. Sci., 15, 247-254 https://doi.org/10.1002/pts.594
- Kim, Y.M., Paik, H.D. and Lee, D.S. (2002) Shelf-life characteristics of fresh oysters and ground beef as affected by bacteriocin-coated plastic packaging film, J. Sci. Food Agric., 82, 998-1002 https://doi.org/10.1002/jsfa.1125
- Hong, S.l. and Krochta, J.M. (2003) Oxygen barrier properties of whey protein isolate coatings on polypropylene films. J. Food Sci., 68, 224-228 https://doi.org/10.1111/j.1365-2621.2003.tb14143.x
- Begin, A. and Van Calsteren, M.R. (1999) Antimicrobial films produced from chitosan. Inter. J. Biol. Macromol., 26, 63-67 https://doi.org/10.1016/S0141-8130(99)00064-1
- Ko, S., Janes, M.E., Hettiarachchy, N.S. and Johnson, M.G. (2001) Physical and chemical properties of edible films containing nisin and their action against Listeria monocytogenes. J. Food Sci., 66, 1006-1011 https://doi.org/10.1111/j.1365-2621.2001.tb08226.x
- Cagri, A., Ustunol, Z. and Ryser, E.T. (2001) Antimicrobial, mechanical, and moisture barrier properties of low pH whey protein-based edible films containing p-aminobenzoic or sorbic acids. J. Food Sci., 66, 865-870 https://doi.org/10.1111/j.1365-2621.2001.tb15188.x
- Han, J.H. and Floras, J.D. (1998) Potassium sorbate diffusivity in America processed and Mozzarella cheeses. J. Food Sci., 63, 435-437 https://doi.org/10.1111/j.1365-2621.1998.tb15758.x
- Cha, D.S., Choi, J.H., Chinnan, M.S. and Park, H.J. (2002) Antimicrobial films based on Na-alginate and k-carrageenan. Lebensm. Wiss. Technol., 35, 715-719 https://doi.org/10.1006/fstl.2002.0928
- Siragusa, G.R., Cutter, C.N. and Willett, J.L. (1999) Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiol., 16, 229-235 https://doi.org/10.1006/fmic.1998.0239