A NEW INTERPRETATION OF SUBHYPERGROUPS OF A HYPERGROUP

B. DAVVAZ

ABSTRACT. In this paper we present a new and natural interpretation of subhypergroups in a partially ordered algebra. Then we study their connection with corresponding crisp concepts through their newly defined Q-cuts. The theorems proved also highly generalized the existing ones.

1. Basic definitions

We will be concerned primarily with a basic non-empty set H, elements of which are denoted by x, y, z, \ldots A hyperoperation \circ on H is a mapping of $H \times H$ into the family of non-empty subsets of H. If $(x, y) \in H \times H$, its image under \circ is denoted by $x \circ y$. If $A, B \subseteq H$ then $A \circ B$ is given by $A \circ B = \bigcup \{x \circ y \mid x \in A, y \in B\}; x \circ A$ is used for $\{x\} \circ A$ and $A \circ x$ for $A \circ \{x\}$.

Let \circ be a hyperoperation on H then (H, \circ) is called a *hypergroupoid*. A hypergroup is a hypergroupoid (H, \circ) , that satisfies:

- 1) $x \circ (y \circ z) = (x \circ y) \circ z$ for all $x, y, z \in H$,
- 2) $x \circ H = H \circ x = H$ for all $x \in H$.

The second condition is frequently used in the form: Given $x, y \in H$, there exist $u, v \in H$ such that $y \in x \circ u$ and $y \in v \circ x$. A non-empty subset K of a hypergroup (H, \circ) is called a *subhypergroup* if $x \circ K = K \circ x = K$ for all $x \in K$. A comprehensive review of the theory of hyperstructures appears in Corsini [1] and Vougiouklis [7].

Let $P = (P, *, 1, \leq)$ be a partially ordered algebra. Therefore (P, *) is a monoid, where 1 is the unity for *, and * is isotone in both variables; and (P, \leq) is a complete

Received by the editors February 17, 2003 and, in revised form, April 28, 2003.

 $^{2000\} Mathematics\ Subject\ Classification.\ 20 N20.$

Key words and phrases. hypergroup, subhypergroup, partially ordered algebra, strongly regular relation.

164 B. Davvaz

lattice, i. e., \leq is a partial order on P such that for any $S \subseteq P$, infimum and supremum of S exist and these will be denoted by $\bigwedge_{s \in S} \{s\}$ and $\bigvee_{s \in S} \{s\}$, respectively. Forther on P always denotes such a structure. Let X be a non-empty set. A map $\mu: X \longrightarrow P$ is called a P-subset of X (cf. Filep [5]). If P is the unit interval [0,1], then μ is a fuzzy set. The notion of fuzzy set was formulated by Zadeh [8]. Recall that a subset Q of an ordered set (P, \leq) is called a right segment of (P, \leq) if and only if

$$\forall q \in Q, \ \forall p \in P: \ (q \le p \Longrightarrow p \in Q).$$

Clearly any closed interval [p, 1] in P is a right segment of (P, \leq) .

2. P-SUBHYPERGROUPS AND P-STRONGLY REGULAR RELATIONS

In Davvaz [2], we introduced the concept of fuzzy subhypergroup of a hypergroup which is a generalization of fuzzy subgroups (cf. Rosenfeld [6, Definition]). In Davvaz [4], we introduced the concept of an interval-valued fuzzy subhypergroup of a hypergroup which is an extended notion of a fuzzy subhypergroup. In fact, we replaced D[0,1], the family of all closed subintervals of [0,1], instead of unit interval [0,1]. Now, we unify and generalize these definitions.

Definition 1. Let H be a hypergroup and μ a P-subset of H. Then μ is called a P-subhypergroup of H, if

- 1) $\mu(x) * \mu(y) \le \bigwedge_{z \in x \circ y} {\{\mu(z)\}}$ for all $x, y \in H$,
- 2) for all $x, a \in H$ there exists $y \in H$ such that $x \in a \circ y$ and

$$\mu(a) * \mu(x) \le \mu(y),$$

3) for all $x, a \in H$ there exists $z \in H$ such that $x \in z \circ a$ and

$$\mu(x) * \mu(a) \le \mu(z).$$

Definition 1 is a generalization of Davvaz ([2, Definition 1] and [4, Definition 3.1]).

For example, consider $H = \{e, a, b\}$ and define \circ on H with the help of the following table:

$$egin{array}{c|cccc} \circ & e & a & b \\ \hline e & e & H & H \\ a & H & a & a \\ b & H & a & \{a,b\} \end{array}$$

Then (H, \circ) is a hypergroup. Suppose $(P, *, 1, \leq)$ is a partially ordered algebra such that P is a lattice and * = meet. Now, we define $\mu : H \longrightarrow P$ by $\mu(a) = \mu(b) \leq \mu(e)$. Then μ is a P-subhypergroup of H.

Definition 2. Let Q be a right segment of P. Then by the Q-cut μ_Q of some P-subset μ of X we mean the following subset of X:

$$\mu_Q = \{ x \in X | \ \mu(x) \in Q \}.$$

Theorem 3. Let H be a hypergroup and μ a P-subset of H. If each non-empty Q-cut μ_Q of μ is a subhypergroup of H, then μ is a P-subhypergroup of H.

Proof. Take any element $x, y \in H$ and consider the right segment of P as follows:

$$Q = [\mu(x) * \mu(y), 1].$$

Since

$$\mu(x) * \mu(y) \le \mu(x) * 1 = \mu(x) \le 1,$$

$$\mu(x) * \mu(y) \le 1 * \mu(y) = \mu(y) \le 1,$$

we get $\mu(x), \mu(y) \in Q$, therefore $x, y \in \mu_Q$. Since μ_Q is a subhypergroup of H, hence for every $z \in x \circ y$ we have $z \in \mu_Q$ and so $\mu(z) \in Q$. Therefore $\mu(x) * \mu(y) \le \mu(z)$ which implies

$$\mu(x) * \mu(y) \le \bigwedge_{z \in x \circ y} {\{\mu(z)\}},$$

and in this way the condition (1) of Definition 1 is verified. To verify the second condition, if $x, a \in H$, we consider the right segment of P as follows:

$$Q = [\mu(a) * \mu(x), 1].$$

Then $\mu(a), \mu(x) \in Q$, and so $x, a \in \mu_Q$. Hence there exists $y \in \mu_Q$ such that $x \in a \circ y$. Since $y \in \mu_Q$, we get $\mu(a) * \mu(x) \le \mu(y)$. In the similar way the third condition of Definition 1 is valid.

Theorem 4. Let H be a hypergroup, μ a P-subhypergroup of H, and Q a right segment of P. If Q is closed under *, then μ_Q is a subhypergroup of H.

Proof. Consider a right segment Q satisfying the given condition. Then for any elements $x, y \in \mu_Q$ we have $\mu(x), \mu(y) \in Q$, and so $\mu(x) * \mu(y) \in Q$. For every $z \in x \circ y$, we have $\mu(x) * \mu(y) \leq \mu(z)$. Since Q is a right segment, we get $\mu(z) \in Q$ or $z \in \mu_Q$ which means that $x \circ y \subseteq \mu_Q$.

166 B. Davvaz

Now, let $x, a \in \mu_Q$, we have $\mu(x), \mu(a) \in Q$ and so $\mu(a) * \mu(x) \in Q$. Since $x, a \in H$, then there exists $y \in H$ such that $x \in a \circ y$ and $\mu(a) * \mu(x) \leq \mu(y)$. Since Q is a right segment, we get $\mu(y) \in Q$ or $y \in \mu_Q$. Therefore we have $a \circ \mu_Q = \mu_Q$. Similarly we can show that $\mu_Q \circ a = \mu_Q$. Hence μ_Q is a subhypergroup of H. \square

Theorems 3 and 4 are generalizations of Davvaz ([2, Thorem 1] and [4, Theorem 3.3]).

Let (H_1, \circ) and (H_2, \bullet) be two hypergroups. Then we can define a hyperproduct on $H_1 \times H_2$ as follows:

$$(x_1, x_2) \otimes (y_1, y_2) = \{(a, b) | a \in x_1 \circ x_2, b \in y_1 \bullet y_2\}.$$

Clearly $H_1 \times H_2$ equipped with \otimes is a hypergroup.

Definition 5. Let H_1, H_2 be two hypergroups and μ, λ be P-subsets of H_1, H_2 respectively. The P-product of μ, λ is defined as follows:

$$(\mu \times \lambda)(x, y) = \mu(x) * \lambda(y).$$

In the above definition, if we condider P = [0, 1] and * =some t-norm, then we obtain the definition of t-product between two hypergroups where studied in Davvaz [3].

Theorem 6. Let H_1 , H_2 be two hypergroups and μ , λ be P-subhypergroups of H_1 , H_2 respectively. If P is an abelian monoid, then the P-product $\mu \times \lambda$ is a P-subhypergroup of $H_1 \times H_2$.

Proof. Suppose $(x_1, x_2), (y_1, y_2) \in H_1 \times H_2$. For every $(z_1, z_2) \in (x_1, x_2) \otimes (y_1, y_2)$ we have

$$\mu \times \lambda(x_1, x_2) * \mu \times \lambda(y_1, y_2) = \mu(x_1) * \lambda(x_2) * \mu(y_1) * \lambda(y_2)$$

$$= (\mu(x_1) * \mu(y_1)) * (\lambda(x_2) * \lambda(y_2))$$

$$\leq \mu(z_1) * \lambda(z_2)$$

$$= \mu \times \lambda(z_1, z_2).$$

Therefore the condition (1) of Definition 1 is satisfied. Now, for every (x_1, x_2) and $(a_1, a_2) \in H_1 \times H_2$ there exists $(y_1, y_2) \in H_1 \times H_2$ such that $x_1 \in a_1 \circ y_1$, $x_2 \in a_2 \bullet y_2$ and $\mu(a_1) * \mu(x_1) \leq \mu(y_1)$, $\lambda(a_2) * \lambda(x_2) \leq \lambda(y_2)$. Therefore we have

$$(x_1, x_2) \in (a_1, a_2) \otimes (y_1, y_2)$$
 and

$$\mu \times \lambda(a_1, a_2) * \mu \times \lambda(x_1, x_2) = \mu(a_1) * \lambda(a_2) * \mu(x_1) * \lambda(x_2)$$

$$= (\mu(a_1) * \mu(x_1)) * (\lambda(a_2) * \lambda(x_2))$$

$$\leq \mu(y_1) * \lambda(y_2)$$

$$= \mu \times \lambda(y_1, y_2).$$

The proof of condition (3) of Definition 1 is similar to the proof of second condition.

Corollary 7. Let H_1, H_2 be two hypergroups, μ , λ be P-subhypergroups of H_1 H_2 respectively. If Q_1, Q_2 are right segments of P and closed under *, then

$$(\mu \times \lambda)_{Q_1 \times Q_2} = \mu_{Q_1} \times \lambda_{Q_2}.$$

Definition 8 (Corsini [1]). If H is a hypergroup and $R \subseteq H \times H$ is an equivalence relation, we set

$$A\overline{R}B \iff aRb \text{ for all } a \in A, b \in B,$$

for all pairs (A, B) of non-empty subsets of H. The relation R is said to be strongly regular to the right (resp. to the left) if

$$xRy \Longrightarrow x \circ a\overline{\overline{R}}y \circ a \text{ (resp. } xRy \Longrightarrow a \circ x\overline{\overline{R}}a \circ y)$$

for all $x, y, a \in H$. Moreover, R is called *strongly regular* if it is strongly regular to the right and to the left.

Definition 9 (Filep [5]). A P-subset $r: X \times X \longrightarrow P$ is called a P-relation on P-subset μ , if it satisfies the following property:

$$r(x,y) \le \mu(x) * \mu(y)$$
 for all $x, y \in X$.

A P-relation r on a P-subset μ is said to be

- 1) reflexive, if $r(x, y) = \mu(x) * \mu(y)$ for all $x \in X$;
- 2) symmetric, if r(x,y) = r(y,x) for all $x, y \in X$;
- 3) transitive, if for any $x, z \in X$

$$r(x, y) * r(y, z) < r(x, z)$$
 for all $y \in X$.

A reflexive, symmetric and transitive P-relation r on a P-subset μ is called P-similarity.

 \neg

168 B. Davvaz

Definition 10. Let H be a hypergroup and μ a P-subhypergroup of H. A P-relation r on μ is called a P-compatible relation on μ if

$$r(x_1, x_2) * r(y_1, y_2) \le \bigwedge_{\substack{z_1 \in x_1 \circ y_1 \ z_2 \in x_2 \circ y_2}} \{r(z_1, z_2)\} \text{ for all } x_1, x_2, y_1, y_2 \in H.$$

A P-compatible P-similarity relation is called a P-strongly regular relation on the P-subhypergroup μ .

Theorem 11 (Filep [5]). Let r be a P-relation on a P-subset μ . If each Q-cut r_Q is an equivalence relation on μ_Q for any right segment Q of P, then r is a P-similarity on μ .

Now, we consider the inverse of Theorem 11.

Theorem 12 (Filep [5]). Let r be a P-similarity on a P-subset μ , and let Q be a right segment of P. If Q is closed under *, then r_Q is an equivalence relation on μ_Q .

Theorem 13. Let H be a hypergroup, μ a P-subset of H, and r a P-relation on μ . If for all non-empty right segment Q of P, μ_Q is a subhypergroup and r_Q is a strongly regular relation on μ_Q , then r is a P-strongly regular relation on μ .

Proof. Using Theorem 11, it is enough to show that r is a P-compatible relation. Suppose $x_1, x_2, y_1, y_2 \in H$, we put

$$Q = [r(x_1, x_2) * r(y_1, y_2), 1],$$

then $r(x_1, x_2), r(y_1, y_2) \in Q$ and so $(x_1, x_2) \in r_Q$, $(y_1, y_2) \in r_Q$. Since

$$r(x_1, x_2) \le \mu(x_1) * \mu(x_2) \le \mu(x_1) * 1 = \mu(x_1),$$

$$r(x_1, x_2) \le \mu(x_1) * \mu(x_2) \le 1 * \mu(x_2) = \mu(x_2),$$

we get $x_1, x_2 \in \mu_Q$, similarly we obtain $y_1, y_2 \in \mu_Q$. Since r_Q is a strongly regular relation on the subhypergroup μ_Q , therefore $x_1 \circ y_1 \overline{\overline{R}} x_2 \circ y_2$, and consequently for all $z_1 \in x_1 \circ y_1$ and $z_2 \in x_2 \circ y_2$ we have $z_1 r_Q z_2$ or $(z_1, z_2) \in r_Q$. Therefore $r(x_1, x_2) * r(y_1, y_2) \leq r(z_1, z_2)$, and so

$$r(x_1, x_2) * r(y_1, y_2) \le \bigwedge_{\substack{z_1 \in x_1 \circ y_1 \\ z_2 \in x_2 \circ y_2}} \{r(z_1, z_2)\}.$$

Theorem 14. Let H be a hypergroup, μ a P-subhypergroup of H, and r a P-strongly regular relation on μ . If a right segment Q of P is closed under *, then r_Q is a strongly regular relation on μ_Q .

Proof. Suppose Q is some right segment satisfying the given condition. By Theorem 4, μ_Q is a subhypergroup of H and using Theorem 12, r_Q is an equivalence relation on μ_Q . Suppose $(x_1, x_2), (y_1, y_2) \in r_Q$ then $r(x_1, x_2) \in Q$ and $r(y_1, y_2) \in Q$ where x_1, x_2, y_1, y_2 are elements of H. Since Q is closed under *, it follows that

$$r(x_1, x_2) * r(y_1, y_2) \in Q.$$

Since r is a P-strongly regular relation, then

$$\bigwedge_{\substack{z_1 \in x_1 \circ y_1 \\ z_2 \in x_2 \circ y_2}} \{r(z_1, z_2)\} \in Q$$

and so $r(z_1, z_2) \in Q$ for all $z_1 \in x_1 \circ y_1$ and $z_2 \in x_2 \circ y_2$, which implies $(z_1, z_2) \in r_Q$. Hence $x_1 \circ y_1 \overline{r_Q} x_2 \circ y_2$. On the other hand $(x_1, x_2), (y_1, y_2) \in r_Q$ imply that $x_1, x_2, y_1, y_2 \in \mu_Q$. Therefore r_Q is a strongly regular relation on μ_Q .

3. ACKNOWLEDGEMENT

The author would like to express his cordial appreciation to the referee for the valuable suggestions.

REFERENCES

- 1. C. P. Corsini: Prolegomena of hypergroup theory, Second edition. Aviani Editor, 1993.
- 2. B. Davvaz: Fuzzy H_v -groups. Fuzzy Sets and Systems 101 (1999), no. 1, 191–195. CMP 1 658 991
- 3. _____: Product of fuzzy H_v -subgroups. J. Fuzzy Math. 8 (2000), no. 1, 43–51. MR 2001a:20118
- 4. ____: Interval-valued fuzzy subhypergroups. Korean J. Comput. Appl. Math. 6 (1999), no. 1, 197–202. MR 99k:20124
- 5. L. Filep: Study of fuzzy algebras and relations from a general viewpoint. *Acta Math. Acad. Paeda. Nyhazi.* **14** (1998), 49–55. MR **2000f:**03160
- 6. A. Rosenfeld: Fuzzy groups. J. Math. Anal. Appl. 35 (1971), 512-517. MR 43#6355
- 7. T. Vougiouklis: *Hyperstructures and their representations*. Hadronic Press, Inc., Palm Harbor, FL, 1994. MR **95h**:20093
- 8. L. A. Zadeh: Fuzzy sets. Information and Control 8 (1965), 338-353. MR 36#2509

DEPARTMENT OF MATHEMATICS, YAZD UNIVERSITY, YAZD, IRAN Email address: davvaz@yazduni.ac.ir