The Study of the Financial Index Prediction Using the Equalized Multi-layer Arithmetic Neural Network

균등다층연산 신경망을 이용한 금융지표지수 예측에 관한 연구

  • 김성곤 (인천기능대학 정보통신시스템과) ;
  • 김환용 (원광대학교 전기전자 및 정보공학부)
  • Published : 2003.09.01

Abstract

Many researches on the application of neural networks for making financial index prediction have proven their advantages over statistical and other methods. In this paper, a neural network model is proposed for the Buying, Holding or Selling timing prediction in stocks by the price index of stocks by inputting the closing price and volume of dealing in stocks and the technical indexes(MACD, Psychological Line). This model has an equalized multi-layer arithmetic function as well as the time series prediction function of backpropagation neural network algorithm. In the case that the numbers of learning data are unbalanced among the three categories (Buying, Holding or Selling), the neural network with conventional method has the problem that it tries to improve only the prediction accuracy of the most dominant category. Therefore, this paper, after describing the structure, working and learning algorithm of the neural network, shows the equalized multi-layer arithmetic method controlling the numbers of learning data by using information about the importance of each category for improving prediction accuracy of other category. Experimental results show that the financial index prediction using the equalized multi-layer arithmetic neural network has much higher correctness rate than the other conventional models.

본 논문에서는 주식의 종가, 거래량 기술적 지표인 MACD(Moving Average Convergence Divergence) 값과 투자 심리선값을 입력 패턴으로 사용하여 개별 금융지표지수에 대한 매도, 중립 및 매수 시점 예측을 수행하는 신경망 모델이 제안된다. 이 모델은 역전파 알고리즘을 이용한 시계열 예측 기능과 균등다층연산 기능을 갖는다. 학습 데이터의 수가 각 범주들(매도, 중립, 매수)에 균일하게 분포되어 있지 않을 경우 기존의 신경망은 가장 우세한 범주의 예측 정확성만을 향상시키는 문제점을 가지고 있다. 따라서, 본 논문에서는 신경망의 구조, 동작, 학습 알고리즘에 대해 표현한 후 다른 범주의 예측 정확성도 향상시키기 위해 각 범주의 중요성을 이용하여 학습 데이터의 수를 조절하는 균등다층연산 방법을 제안한다. 실험 결과, 균등다층연산 신경망을 이용한 금융지표지수 예측 방법이 기존의 신경망을 이용한 금융지표지수 예측 방법 보다 각 범주에 대해 높은 정확성 비율을 보임을 확인할 수 있었다.

Keywords