Characterization of UV-Inducible Gene (UVI-180) in Schizosaccharomyces pombe

분열형 효모 Schizosaccharomyces pombe에서 자외선 유도유전자 UVI-180의 특성 연구

  • Published : 2003.09.01

Abstract

본 연구는 DNA 상해유도기작을 규명하기 위하여 하등 진핵생물인 분열형 효모 Schizosaccharomyces Pombe로부터 subtraction hybridization방법을 이용하여 자외선 유도 유전자인 UVI-180을 분리하고 그 유전자 구조와 발현양상을 조사하였다. UVI-180유전자의 발현양상을 Northern hybridization 방법으로 살펴본 결과 자외선(ultraviolet-light)조사 1시간 후에 최대의 발현 증가를 나타내었다. 반면 알킬화제인 MMS(methyl methanesulfonate)처리에 의해서는 전혀 발현이 증가되지 않았다. 이 결과 UVI-180유전자는 DNA상해에 따라 각기 다른 발현양상을 나타냄을 알 수 있었다. 유전자의 기능을 알기 위하여 null-mutant세포 주를 제조하여 그 특성을 살펴본 결과 이 유전자는 세포의 성장에 필수적인 유전자임을 알 수 있었다.

Keywords

References

  1. Boothmann DA, Meyers M, Fukunaga N and Lee SW. Isolation of X-ray-inducible transcripts from radioresistant human melanoma cells, Proc. Natl. Acid. Sci. USA. 1993; 90: 7200-7204 https://doi.org/10.1073/pnas.90.15.7200
  2. Birkenbihl RP and Subramani S. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double strand break repair, Nuclei Acid Res. 1992; 20: 6605-6611 https://doi.org/10.1093/nar/20.24.6605
  3. Choi IS. Isolation and characterization of new family genes DNA damage in yeast, Environmental Mutagens & Carcinogens 1999; 19(1): 28-33
  4. Elledge SJ and Davis RW. Identification and isolation of the gene encoding the small submit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damageinducible gene required for mototic viability, Mol. Cell. Biol. 1987; 7: 2783-2793 https://doi.org/10.1128/MCB.7.8.2783
  5. Feinberg AP and Vogelstein B. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity, Anal. Biochem. 1984; 137: 266-267 https://doi.org/10.1016/0003-2697(84)90381-6
  6. Fornace AJ, Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J and Holbrook NJ. Mammalian genes coordinately regulated by growth arrest signal and DNA-damaging agents, Mol. Cell. Biol. 1989; 9: 4196-4203
  7. Harosh I and Deschavanne P. The RAD3 gene is a member of the DEAH family RNA helicase-like protein, Nucleic Acids Res. 1989; 19: 6331 https://doi.org/10.1093/nar/19.22.6331
  8. Jang YK, Jin YH, Kim M, Fabre F, Hong SH and Park SD. Molecular cloning of $rhp51^+$ gene in Schizosccharomyces pomhe, whose amino acid sequence is highly conserved from prokarytic RecA to the mammalian Rad51 homolog, Gene. 1998; 5: 130-142
  9. Madura K and Prakash S. Transcript levels of the Saccharomyces cerevisiae DNA repair gene RAD23 increase in response to UV light and in meiosis but remain constant in the mitotic cell cycle, Necleic Acid Res. 1990; 18: 4737-4742 https://doi.org/10.1093/nar/18.16.4737
  10. Maga JA, McClanahan TA and McEntee K. 1986. Transcriptional regulation of DNA damage responsive (DDR) genes in different rad mutant strains of Saccharomyces cerevisiae, Mol. Gen. Genet. 1986; 205: 276-284 https://doi.org/10.1007/BF00430439
  11. McClanahan T and McEntee K. DNA damage and heat shock dually regulated genes in Saccharomyces cerevisiae, Mol. Cell Biol. 1986; 6: 90-95 https://doi.org/10.1128/MCB.6.1.90
  12. Montelone BA, Prakash S and Prakash L. Recombination and mutagenesis in rad6 mutants of Saccharomyces cerevisiae : Evidence for multiple functions of the RAD6 gene, Mol. Gen. Genet. 1981; 184: 410-415 https://doi.org/10.1007/BF00352514
  13. Morrison A, Miller EJ and Prakash L. Domain structure and functional analysis of the carboxyl-terminal polyacidic sequence of the RAD6 protein of Saccharomyces cerevisiae, Mol. Cell Biol. 1988; 8: 1179-1185 https://doi.org/10.1128/MCB.8.3.1179
  14. Perozzi G and Prakash S. RAD7 gene of Saccharomyses cerevisiae: transcript, nucleotide sequence analysis and functional relationship between the RAD7 and RAD23 gene products, Mol. Cell Biol. 1986; 6: 1497-1507 https://doi.org/10.1128/MCB.6.5.1497
  15. Phipps J, Nasim A and Miller DR. Recovery, repair, and mutagenesis in Schizosaccharomyces pombe, Adv. Genetics. 1985; 23: 1-72 https://doi.org/10.1016/S0065-2660(08)60511-8
  16. Praekelt UM and Macock PA. HSP12, a new small heat shock gene of Saccharomyces cerevisiae : analysis of structure, regulation and function, Mol. Gen. Genet. 1990; 233: 97-106
  17. Radman M, Villani G, Boiteux S, Kinsella AR, Clickman BW and Spadari S. Replication fidelity: mechanisms of mutation avoidance and mutation fixation, Cold Spring Harbor Symp. Quant, Biol. 1978; 43: 937
  18. Sambrook J and Russell DW. 2991 Molecular cloning. A laboratory mannual. Cold Spring Harbor
  19. Schild D, Konfort B, Perez C, Gish W and Mortimer RK. Isolation and characterization of yeast DNA repair genes. I. Cloning of the RAD52 gene. Curr. Genet. 1983; 7: 85-92 https://doi.org/10.1007/BF00365631
  20. Sung P, Prakash S and Prakash L. The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediated the specificity, Genes. Dev. 1988; 2: 1476-1485 https://doi.org/10.1101/gad.2.11.1476
  21. Weinert TA and Hartwell LH. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage, Mol. Cell Biol. 1990; 54: 6564-6572